Genetic Analysis of Complex Traits

  • Stephen P. Bryant
  • Mathias N. Chiano
Part of the Methods in Molecular Biology™ book series (MIMB, volume 175)


The analysis of traits and disorders that exhibit a straightforward Mendelian genetics, based on the kind of major gene models that are easy to set up in computer programs such as LINKAGE (1), has been enormously successful in facilitating identification of the genes responsible. These monogenic models typically use two alleles to represent the trait locus, one allele predisposing to development of the disease or disorder and the other allele showing a normal phenotype, with a penetrance parameter that is specified for each genotype (see Table 1). Family studies using these techniques have led to the localization of many hundreds of single gene disorders (2) and an appreciable fraction of those localized have been positionally cloned.
Table 1

Modeling the Expression of a Trait Phenotype



P t

Trait allele frequency=1−Pn

f tt

Penetrance of the t/t genotype = pT|tt

f tn

Penetrance of the t/n genotype = pT|tn

f nn

Penetrance of the n/n genotype = pT|nn

f t

Penetrance of the t allele = pT|t

f n

Penetrance of the n allele = pT|n


Quantitative Trait Locus Generalize Estimate Equation Single Gene Disorder Variance Component Model Mendelian Trait 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lathrop, G. M. and Lalouel, J. M. (1984) Easy calculations of lod scores and genetic risks on small computers. Am. J. Hum. Genet. 36, 460–465.PubMedGoogle Scholar
  2. 2.
    McKusick, V. A. (1994) Mendelian Inheritance in Man, in Catalogs of Human Genes and Genetic Disorders, 11th ed., John Hopkins University Press, Baltimore, MD.Google Scholar
  3. 3.
    Bryant, S. P. (1994) Genetic linkage analysis, in Guide to Human Genome Computing (Bishop, M. J. B., ed.), Academic Press, London, pp. 59–110.Google Scholar
  4. 4.
    Bryant, S. P. (1998) Constructing and using genetic maps, in Handbook of Genome Analysis (Spurr, N. K., Young, B. D., and Bryant, S. P., eds.), ICRF Blackwells, Oxford, UK, pp. 43–87.Google Scholar
  5. 5.
    Grant, S. F. A., Reid, D. M., Blake, G., Herd, R., Fogelman, I., and Ralston, S. H. (1996) Reduced bone density and osteoporosis associated with a polymorphic Spl binding site in the collagen type I-alpha 1 gene. Nature Genet. 14, 203–305.PubMedCrossRefGoogle Scholar
  6. 6.
    Masi, L., Becherini, L., Gennari, L., Colli, E., Mansani, R., Falchetti, A., et al. (1998) Allelic variants of human calcitonin receptor: distribution and association with bone mass in postmenopausal Italian women. Biochem. Biophys. Res. Commun. 245, 622–626.PubMedCrossRefGoogle Scholar
  7. 7.
    Kruglyak, L. and Lander, E. S. (1995) Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am. J. Hum. Genet. 57, 439–454.PubMedGoogle Scholar
  8. 8.
    Kruglyak, L. and Lander, E. S. (1995) High-resolution genetic mapping of complex traits. Am. J. Hum. Genet. 56, 1212–1223.PubMedGoogle Scholar
  9. 9.
    Kruglyak, L., Daly, M. J., Reeve-Daly, M. P., and Lander, E. S. (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363.PubMedGoogle Scholar
  10. 10.
    Holman, P. and Clayton, D. (1995) Efficiency of typing unaffected relatives in an affected-sib-pair linkage study with single-locus and multiple tightly linked markers. Am. J. Hum. Genet. 57, 1221–1232.Google Scholar
  11. 11.
    Risch, N. (1990a) Linkage strategies for genetically complex traits: I. multilocus models. Am. J. Hum. Genet. 46, 222–228.PubMedGoogle Scholar
  12. 12.
    Risch, N. (1990b) Linkage strategies for genetically complex traits: II. The power of affected relative pairs. Am. J. Hum. Genet. 46, 229–241.PubMedGoogle Scholar
  13. 13.
    Holmans, P. (1993) Asymptotic properties of affected-sib-pair linkage analysis. Am. J. Hum. Genet. 52, 362–374.PubMedGoogle Scholar
  14. 14.
    Lange, K. (1986a) A test statistic for the affected-sib-set method. Ann. Hum. Genet. 50, 283–290.PubMedCrossRefGoogle Scholar
  15. 15.
    Weeks, D. E. and Lange, K. (1988) The affected-pedigree-member method of linkage analysis. Am. J. Hum. Genet. 42, 315–326.PubMedGoogle Scholar
  16. 16.
    Babron, M. C., Martinez, M., Bonaite-Pellie, C., and Clerget-Darpoux, F. (1993) Linkage detection by the affected-pedigree-member method: what is really tested? Genet. Epidemiol. 10, 389–394.PubMedCrossRefGoogle Scholar
  17. 17.
    Allison, D. B., Thiel, B., St Jean, P., Elston, R. C., Infante, M. C., and Schork, N. J. (1998) Multiple phenotype modelling in gene-mapping studies of quantitative traits: power advantages. Am. J. Hum. Genet. 63, 1190–1201.PubMedCrossRefGoogle Scholar
  18. 18.
    Haseman, J. K. and Elston, R. C. (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet. 2, 3–19.PubMedCrossRefGoogle Scholar
  19. 19.
    Fulker, D. W. and Cardon, L. R. (1994) A sib-pair approach to interval mapping of quantitative trait loci. Am. J. Hum. Genet. 54, 1092–1103.PubMedGoogle Scholar
  20. 20.
    Searle, S. R., Casella, G., and McCulloch, C. E. (1992) Variance Components, John Wiley and Sons, New York.CrossRefGoogle Scholar
  21. 21.
    Schork, N. J., North, S. P., Lindpainter, K., and Jacob, H. J. (1996) Extensions to quantitative trait locus mapping in experimental organisms. Hypertension 28, 1104–1111.PubMedGoogle Scholar
  22. 22.
    Amos, C. I. (1994) Robust variance-component approach for assessing genetic linkage pedigrees. Am. J. Hum. Genet. 54, 535–543.PubMedGoogle Scholar
  23. 23.
    Goldgar, D. E. (1990) Multipoint analysis of human quantitative genetic variation. Am. J. Hum. Genet. 47, 957–967.PubMedGoogle Scholar
  24. 24.
    Schork, N. J. (1993) Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency, power and modelling considerations. Am. J. Hum. Genet. 53, 1306–1319.PubMedGoogle Scholar
  25. 25.
    SAGE (1994) Statistical Analysis for Genetic Epidemiology, Computer package, available from the Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH.Google Scholar
  26. 26.
    GAS Package Version 2.0, available from Dr. Alan Young, Oxford University (
  27. 27.
    Blanjero, J. (1996) SOLAR: Sequential Oligogenic Linkage Analysis Routines, Population Genetics Lab Technical Report No. 6, Southwest Foundation for Biomedical Research, San Antonio, TX.Google Scholar
  28. 28.
    Neale, M. C. (1997) Mx: Statistical Modelling, 2nd ed., Box 980126 WCV, Richmond, VA 23298.Google Scholar
  29. 29.
    Chiano, M. N. and Clayton, D. G. (1998) Genotype relative risks under ordered restriction. Genet. Epidemiol. 15, 135–146.PubMedCrossRefGoogle Scholar
  30. 30.
    Zeger, S. L. and Liang, K. Y. (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121–130.PubMedCrossRefGoogle Scholar
  31. 31.
    Tregouet, D. A., Ducimetiere, P., and Tiret, L. (1997) Testing association in candidate-genes, markers and phenotype in related individuals, by use of estimating equations. Am. J. Hum. Genet. 61, 189–199.PubMedCrossRefGoogle Scholar
  32. 32.
    Excoffier, L. and Slatkin, M. (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. Evol. 12, 921–927.PubMedGoogle Scholar
  33. 33.
    Chiano, M. N. and Clayton, D. G. (1998) Fine genetic mapping using haplotype analysis and the missing data problem. Ann. Hum. Genet. 62, 55–60.PubMedGoogle Scholar
  34. 34.
    Martin, R. B., Maclean, C. J., Sham, P. C., Straub, R. E., and Kendler, K. S. (2000) The trimmed-haplotype test for linkage disequilibrium. Am. J. Hum. Genet. 66, 1062–1075.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Stephen P. Bryant
    • 1
  • Mathias N. Chiano
    • 1
  1. 1.Gemini Research Ltd.CambridgeUK

Personalised recommendations