Skip to main content

In Vivo Assay of Cellular Proliferation

  • Protocol
  • 2749 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 174))

Abstract

The use of bromodeoxyuridine (BrdU) incorporation into replicating DNA is a well-established and commonly used technique for identifying dividing cells in vivo and in cell culture. BrdU is a pyrimidine analog of thymidine that is incorporated into the DNA of cells in the S-phase of the cell cycle (13). Intra-peritoneal injection of BrdU in mice results in nuclear incorporation only where DNA is being actively replicated. The loading time needed to label an S-phase cell to detectability is estimated at <0.2 h directly after injection of BrdU (4). As the availability of BrdU decreases, the labeling time increases to about 0.65 h, 30 min after injection. Thereafter, cells that enter the S-phase continue to become detectably labeled for about 5–6 h. BrdU labeling therefore provides a method for rapidly detecting replicating DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gratzner, H. G. (1982) Monoclonal antibody to 5-Bromo-and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218, 474–475.

    Article  PubMed  CAS  Google Scholar 

  2. Dolbeare, F., Gratzner, H., Pallavicini, M. G., and Gray, J. W. (1983) Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc. Natl. Acad. Sci. USA 80, 5573–5577.

    Article  PubMed  CAS  Google Scholar 

  3. Morstyn, G., Hsu, S. M., Kinsella, T., Gratzner, H., Russo, A., and Mitchell, J. B. (1983) Bromodeoxyuridine in tumours and chromosomes detected with a monoclonal antibody. J. Clin. Inv. 72, 1844–1850.

    Article  CAS  Google Scholar 

  4. Hayes, N. L. and Nowakowski, R. S. (2000) Exploiting the dynamics of S-phase tracers in developing brain: Interkinetic nuclear migration for cells entering versus leaving the S-phase. Dev. Neurosci. 22, 44–55.

    Article  PubMed  CAS  Google Scholar 

  5. Robertson, J. M., Ensminger, W. D., Walker, S., and Lawrence, T. S. (1997) A phase I trial of intravenous bromodeoxyuridine and radiation therapy for pancreatic cancer. Intl. J. Radiat. Oncol. Biol. Physics 37, 331–335.

    Article  CAS  Google Scholar 

  6. Robertson, J. M., McGinn, C. J., Walker, S., Marx, M. V., Kessler, M. L., Ensminger, W. D., and Lawrence, T. S. (1997) A phase I trial of hepatic arterial bromodeoxyuridine and conformal radiation therapy for patients with primary hepatobiliary cancers or colorectal liver metastases. Intl. J. Radiat. Oncol. Biol. Physics 39, 1087–1092.

    Article  CAS  Google Scholar 

  7. Ishida, H., Iwama, T., Yoshinaga, K., Gonda, T., and Idezuki, Y. (1998) Bromodeoxyuridine uptake by early liver metastases in rats: A comparison of the hepatic artery and portal vein infusion routes. Surg. Today 28, 822–829.

    Article  PubMed  CAS  Google Scholar 

  8. Kuan, H-Y., Smith, D. E., Ensminger, W. D., Knol. J. A., DeRemer, S. J., Yang, Z., and Stetson, P. L. (1996) Regional pharmacokinetics of 5-bromo-2′-deoxyuridine and 5-fluorouracil in dogs: hepatic arterial versus portal venous infusions. Cancer Res. 56, 4724–4727.

    PubMed  CAS  Google Scholar 

  9. Clark, P. R., Roberts, M. L., and Cowsert, L. M. (1998) A novel drug screening assay for papillomavirus specific antiviral activity. Antiviral Res. 37, 97–106.

    Article  PubMed  CAS  Google Scholar 

  10. Bird, R. M., Broadhurst, A. V., Duncan, I. B., Hall, M. J., Lambert, R. W., and Wong-Kai-In, P. (1986) Antiviral activity of 5′-PAA and 5′-PFA phosphate esters of 2′-deoxyuridines. J. Antimicrob. Chemother. 18, 201–205.

    PubMed  CAS  Google Scholar 

  11. Gustafson, E. A., Chillemi, A. C., Sage, D. R., and Fingeroth, J. D. (1998) The Epstein-Barr Virus thymidine kinase does not phosphorylate ganciclovir or acyclovir and demonstrates a narrow substrate specificity compared to the herpes simplex virus type 1 thymidine kinase. Antimicrob. Agents Chemother. 42, 2923–2931.

    PubMed  CAS  Google Scholar 

  12. Gobbi, P., Falconi, M., Vitale, M., Galanzi, A., Artico, M., Martelli, A. M., and Mazzotti, G. (1999) Scanning electron microscopic detection of nuclear structures involved in DNA replication. Arch. Histol. Cytol. 62, 317–326.

    Article  PubMed  CAS  Google Scholar 

  13. Agren, M. S. (1999) Matrix metalloproteinases (MMPs) are required for re-epithelialization of cutaneous wounds. Arch. Dermatol. Res. 291, 583–590.

    Article  PubMed  CAS  Google Scholar 

  14. Archer, C., Debiec-Rychter, M., Morse, P., Haas, G. P., and Wang, C. Y. (1999) Epithelial proliferation and expression of the aromatic amine activation enzyme N-acetyltransferase in the prostate of postnatal rat. Anticancer Res. 19, 4013–4016.

    PubMed  CAS  Google Scholar 

  15. Watanabe, N., Takai, S., Morita, N., Kawata, M., and Hirasawa, N. (1999) A method of tracking donor cells after simulated autologous transplantation: A study using synovial cells of transgenic rats. Cell Tissue Res. 298, 519–525.

    Article  PubMed  CAS  Google Scholar 

  16. Seiler, M. J. and Aramant, R. B. (1995) Transplantation of embryonic retinal donor cells labelled with BrdU or carrying a genetic marker to adult retina. Exp. Brain Res. 105, 59–66.

    Article  PubMed  CAS  Google Scholar 

  17. Aramant, R. B. and Seiler, M. J. (1992) Retina-to-Retina transplantation of embryonic donor cells, labelled with BrdU or carrying a genetic marker. J. Neural Transplantation Plasticity 3, 283–284.

    Article  Google Scholar 

  18. Sato, S., Kume, K., Ito, C., Ishii, S., and Shimizu, T. (1999) Accelerated proliferation of epidermal keratinocytes by the transgenic expression of the platelet-activating factor receptor. Arch. Dermatol. Res. 291, 614–621.

    Article  PubMed  CAS  Google Scholar 

  19. Waikel, R. L., Wang, X-J., and Roop, D. R. (1999) Targeted expression of c-Myc in the epidermis alters normal proliferation, differentiation and UV-B induced apoptosis. Oncogene 18, 4870–4878.

    Article  PubMed  CAS  Google Scholar 

  20. Snibson, K. J., Bhathal, P. S., Hardy, G. L., Brandon, M. R., and Adams, T. E. (1999) High, persistent hepatocellular proliferation and apoptosis precede hepatocarcinogenesis in growth hormone transgenic mice. Liver 19, 242–252.

    Article  PubMed  CAS  Google Scholar 

  21. Machida, N., Brissie, N., Sreenan, C., and Bishop, S. P. (1997) Inhibition of cardiac myocyte division in c-myc transgenic mice. J. Mol. Cell. Cardiol. 29, 1895–1902.

    Article  PubMed  CAS  Google Scholar 

  22. Wang, T. C., Koh, T. J., Varro, A., Cahill, R. J., Dangler, C. A., Fox, J. G., and Dockray, G. J. (1996) In vivo actions of insulin-like growth factor-I (IGF-I) on cerebellum development in transgenic mice: Evidence that IGF-I increases proliferation of granule cell progenitors. Brain Res. 95, 44–54.

    Article  Google Scholar 

  23. Ishikawa, T., Nakatsuru, Y., Zarkovic, M., and Shamsuddin, A. M. (1999) Inhibition of skin cancer by IP6 in vivo: Inhibition-promotion model. Anticancer Res. 19, 3749–3752.

    PubMed  CAS  Google Scholar 

  24. Wang, X-J., Greenhalgh, D. A., Jiang, A., He, D., Zhong, L., Medina, D., et al. (1998) Expression of a p53 mutant in the epidermis of transgenic mice accelerates chemical carcinogenisis. Oncogene 17, 35–45.

    Article  PubMed  Google Scholar 

  25. Wade, M. and Allday, M. J. (2000) Epstein-Barr Virus suppresses a G2/M checkpoint activated by genotoxins. Mol. Cell. Biol. 20, 1344–1360.

    Article  PubMed  CAS  Google Scholar 

  26. Roy, P., Paganelli, G. M., Faivre, J., Biasco, G., Scheppach, W., Saldanha, M. H., and Beckly, D. E. (1999) Pattern of epithelial cell proliferation in colorectal mucosa of patients with large bowel adenoma or cancer: An ECP case-control study. Euro. J. Cancer Prevent. 8, 401–407.

    Article  CAS  Google Scholar 

  27. Stavropoulos, N. E., Ioachim, E., Pappa, L., Hastazeris, K., and Agnantis, N. J. (1999) Antiproliferative activity of interferon gamma in superficial bladder cancer. Anticancer Res. 19, 4529–4533.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Curran, J. (2001). In Vivo Assay of Cellular Proliferation. In: Wilson, J.B., May, G.H.W. (eds) Epstein-Barr Virus Protocols. Methods in Molecular Biology™, vol 174. Humana Press. https://doi.org/10.1385/1-59259-227-9:379

Download citation

  • DOI: https://doi.org/10.1385/1-59259-227-9:379

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-690-1

  • Online ISBN: 978-1-59259-227-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics