Direct Analysis of Chromosome Methylation

  • Déborah Bourc’his
  • Evani Viegas-Péquignot
Part of the Methods in Molecular Biology™ book series (MIMB, volume 181)


DNA methylation is a possible candidate for a genomic imprinting marker in mammals. This epigenetic modification of DNA satisfies several essential criteria for the identification of the parental origin of individual alleles and larger portions of the genome: DNA methylation is stably propagated in somatic cells during cell division, it is reversible, it may inactivate the target sequence, and male and female gametes have different methylation patterns (reviewed in ref 1.).


Glass Coverslip Hypotonic Buffer Hypotonic Treatment Label Nucleotide Germicidal Lamp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tighlman, S. M. (1999) The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 96, 185–193.CrossRefGoogle Scholar
  2. 2.
    Miller, O. J., Schnedl, W., Allen, J., and Erlanger, B. F. (1974) 5-methylcytosine localized in mammalian constitutive heterochromatin. Nature 251, 636–637.PubMedCrossRefGoogle Scholar
  3. 3.
    Okamoto, A., Miller, D.A., Erlanger, B.F., and Miller, O.J. (1981) Polymorphism of 5-methylcytosine-rich DNA in human acrocentric chromosomes. Hum. Genet. 58, 255–259.PubMedCrossRefGoogle Scholar
  4. 4.
    Miniou, P., Jeanpierre, M., Blanquet, V., Sibella, V., Bonneau, D., Herbelin, C., Fischer, A., Niveleau, A., and Viegas-Péquignot, E. (1994) Abnormal methylation pattern in constitutive and facultative (X inactive chromosome) heterochromatin of ICF patients. Hum. Mol. Genet. 3, 2093–2102.PubMedCrossRefGoogle Scholar
  5. 5.
    Viegas-Pequignot, E., Dutrillaux, B., and Thomas, G. (1988) Inactive X has the highest concentration of unmethylated HhaI sites. Proc. Natl. Acad. Sci. USA 85, 7657–7660.PubMedCrossRefGoogle Scholar
  6. 6.
    Miniou, P., Bourc’his, D., Molina Gomes, D., Jeanpierre, M., and Viegas Péquignot, E. (1997) Undermethylation of Alu sequences in ICF syndrom: molecular and in situ analysis. Cytogenet. Cell Genet. 77, 308–313.PubMedCrossRefGoogle Scholar
  7. 7.
    O’Neill, R. J. W., O’Neill, M. J. O., and Graves, J. A. M. (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393, 68–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Jeppeson, P., Mitchell, A., Turner, B., and Perry, P. (1992) Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centromeric heterochromatin in human metaphase chromosomes. Chromosoma 101, 322–332.CrossRefGoogle Scholar
  9. 9.
    Barbin, A., Montpellier, C., Kokalj-Vocak, N., Gibaud, A., Niveleau, A., Malfoy, B., Dutrillaux, B., and Bourgeois, C. (1994) New sites of methylcytosin-rich DNA detected on metaphase chromosomes. Hum. Genet. 94, 684–692.PubMedCrossRefGoogle Scholar
  10. 10.
    Yoder, J. A., Walsh, C. P., and Bestor, T. H. (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340.PubMedCrossRefGoogle Scholar
  11. 11.
    Hellmann-Blumberg, U., Hintz, M. F., Gatewood, J. M., and Schmid, C. W. (1993) Developmental differences in methylation of human Alu repeats. Mol. Cell Biol. 13, 4523–4530.PubMedGoogle Scholar
  12. 12.
    Kochanek, S., Renz, D., and Doerfler, W. (1993) DNA methylation in the Alu sequences of diploid and haploid primary human cells. EMBO J. 12, 1141–1151.PubMedGoogle Scholar
  13. 13.
    de Almeida-Toledo, L. F., Viegas-Péquignot, E., Coutinho-Barbosa, A. C., Foresti, F., Niveleau, A., and de Almeida Toledo-Finlo, S. (1998) Localization of 5-methylcytosine in metaphase chromosomes of diploid and triploid pacu fish, Piaractus mesopotamicus (Pisces, Characiformes). Cytogenet. Cell Genet. 83, 21–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Nan, X., Tate, P., Li, E., and Bird, A. (1996) DNA methylation specifies chromosomal localization of MeCP2. Mol. Cell Biol. 16, 414–421.PubMedGoogle Scholar
  15. 15.
    Rougier, N., Bourc’his, D., Molina Gomes, D., Niveleau, A., Plachot, M., Pàldi, A., and Viegas-Péquignot, E. (1998) Chromosome methylation patterns during mammalian preimplantation development. Genes Deve. 12, 2108–2113.CrossRefGoogle Scholar
  16. 16.
    Reynaud, C., Bruno, C., Boullanger, P., Grange, J., Barbesti, S., and Niveleau, A. (1991) Monitoring of urinary excretion of modified nucleosides in cancer patients using a set of six monoclonal antibodies. Cancer Lett. 61, 255–261.CrossRefGoogle Scholar
  17. 17.
    Tarkowski, A. K. (1966) An air-drying method for chromosome preparation from mouse eggs. Cytogenics 5, 394–400.CrossRefGoogle Scholar
  18. 18.
    Viegas-Péquignot, E. and Dutrillaux, B. (1978) Une méthode simple pour obtenir des prophases et des prométaphases. Ann. Genet. 21, 122–128.Google Scholar
  19. 19.
    Bianchi, N. O., Vidal-Rioja, L., and Cleaver, J. E. (1986) Direct visualization of the sites of DNA methylation in human and mosquito chromosomes. Chromosoma 94, 362–366.PubMedCrossRefGoogle Scholar
  20. 20.
    Ferruci, L., Mezzanotte, R., Vanni, R., Stuppia, R., Guanciali-Franchi, P., Calabrese, G., Palka, G., Bianchi, U., and Summer, T. (1988) Effect of HpaII and MspI restriction endonucleases on chronic myelogenous leukemia chromosomes. Cancer Genet. Cytogenet. 34, 251–256.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Déborah Bourc’his
    • 1
  • Evani Viegas-Péquignot
    • 1
  1. 1.INSERM U383Hôpital Necker-Enfants MaladesParis CedexFrance

Personalised recommendations