Deriving and Propagating Mouse Embryonic Stem Cell Lines for Studying Genomic Imprinting

  • Jeffrey R. Mann
Part of the Methods in Molecular Biology™ book series (MIMB, volume 181)


Embryonic stem (ES) cells are a cell culture derivative of the blastocyst inner cell mass (ICM), the latter giving rise to the embryo, the amnion, the yolk sac, and the chrorioallantoic portion of the placenta. Blastocyst injection chimera experiments show that ES cells are similar to early-stage ICM cells in that they contribute to the primitive ectoderm and endoderm derivatives (1). However, it is probably not posssible to equate these two cell types, as ES cells appear to be produced by the cell culture environment and have no exact counterpart in the blastocyst. Instead, ES cells could be thought of as being ICM cells that, instead of undergoing rapid differentiation as they would in vivo, are abnormally locked into continuing cycles of division in the undifferentiated state by virtue of the action of exogenous factors. Leukemia inhibitory factor, LIF, is one such factor (2,3) and is indispensable for the propagation of mouse ES cells at least when primary embryo fibroblasts (PEFs) are used as feeder layers (4).


Embryonic Stem Cell Blastocyst Stage Feeder Layer Inner Cell Mass Embryonic Stem Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beddington, R. S. P. and Robertson, E. J. (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105 733–737.PubMedGoogle Scholar
  2. 2.
    Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J., Stahl, M., and Rogers, D. (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides Nature 336 688–690.PubMedCrossRefGoogle Scholar
  3. 3.
    Williams, R. L., Hilton, D. J., Pease, S., Wilson, T. A., Stewart, C. L., Gearing, D. P., Wagner, E. F., Metcalf, D., Nicola, N. A., and Gough, N. M. (1988) Myeloid leukemia inhibitory factor maintains the developmental potential of embryonic stem cells Nature 336 684–687.PubMedCrossRefGoogle Scholar
  4. 4.
    Stewart, C. L., Kaspar, P., Brunet, L. J., Bhatt, H., Gadi, I., Köntgen, F., and Abbondanzo, S. J. (1992) Blastocyst implantation depends on maternal expression of luekemia inhibitory factor. Nature 359 76–79.PubMedCrossRefGoogle Scholar
  5. 5.
    Mann, J. R., Gadi, I., Harbison, M. L., Abbondanzo, S. J., and Stewart, C. L.(1990)Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeras: implications for genetic imprinting Cell 62 251–260.PubMedCrossRefGoogle Scholar
  6. 6.
    McLaughlin, K. J., Kochanowski, H., Solter, D., Schwarzkopf, G., Szabó, P. E., and Mann, J. R. (1997) Roles of the imprinted gene Igf2 and paternal duplication of distal chromosome 7 in the perinatal abnormalities of androgenetic mouse chimeras Development 124 4897–4904PubMedGoogle Scholar
  7. 7.
    Mann, J. R. and Stewart, C. L. (1991) Development to term of mouse androgenetic aggregation chimeras. Development 113 1325–1333.PubMedGoogle Scholar
  8. 8.
    Mann, J. R. (1992) Properties of androgenetic and parthenogenetic mouse embryonic stem cell lines; are genetic imprints conserved? Semin. Dev. Biol. 3, 77–85.Google Scholar
  9. 9.
    Allen, N. D., Barton, S. C., Hilton, K., Norris, M. L., and Surani, M. A. (1994) A functional analysis of imprinting in parthenogenetic embryonic stem cells Development 120, 1473–1482.PubMedGoogle Scholar
  10. 10.
    Szabó, P. and Mann, J. R. (1994) Expression and methylation of imprinted genes during in vitro differentiation of mouse parthenogenetic and androgenetic embryonic stem cell lines. Development 120 1651–1660.PubMedGoogle Scholar
  11. 11.
    Szabó, P. E., Pfeifer, G. P., and Mann, J. R. (1998) Characterization of novel parent-specific epigenetic modifications upstream of the imprinted mouse H19 gene Mol. Cell Biol. 18, 6767–6776.PubMedGoogle Scholar
  12. 12.
    Khosla, S., Aitchison, A., Gregory, R., Allen, N. D., and Feil, R. (1999) Parental allele-specific chromatin configuration in a boundary-imprinting-control element upstream of the mouse H19 gene Mol. Cell Biol. 19 2556–2566PubMedGoogle Scholar
  13. 13.
    Tremblay, K. D., Duran, K. L., and Bartolomei, M. S. (1997) A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol. Cell Biol. 17, 4322–4329.PubMedGoogle Scholar
  14. 14.
    Warnecke, P. M., Mann, J. R., Frommer, M., and Clark, S. J. (1998) Bisulfite sequencing in preimplantation embryos: DNA methylation profile of the upstream region of the mouse imprinted H19 gene Genomics 51 182–190.PubMedCrossRefGoogle Scholar
  15. 15.
    Dean, W., Bowden, L., Aitchison, A., Klose, J., Moore, T., Meneses, J. J., Reik, W., and Feil, R. (1998) Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 125 2273–2282.PubMedGoogle Scholar
  16. 16.
    Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J. C. (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells Proc. Natl Acad. Sci. USA 90 8424–8428.PubMedCrossRefGoogle Scholar
  17. 17.
    Mann, J. R. (1993) Surgical techniques in production of transgenic mice. Methods Enzymol. 225 782–793.PubMedCrossRefGoogle Scholar
  18. 18.
    Chatot, C. L., Ziomek, C. A., Bavister, B. D., Lewis, J. L., and Torres, I. (1989) An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fert. 86 679–688.CrossRefGoogle Scholar
  19. 19.
    Wood, M. J., Whittingham, D. G., and Rall, W. F. (1987) The low temperature preservation of mouse oocytes and embryos, in Mammalian Development: A Practical Approach (Monk, M., ed.), IRL, Oxford, U.K./Washington DC 255–280.Google Scholar
  20. 20.
    Hogan, B., Beddington, R., Costantini, F., and Lacy, E. (1994) Manipulating the Mouse Embryo: A Laboratory Manual 2d ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  21. 21.
    Cuthbertson, K. S. R. (1983) Parthenogenetic activation of mouse oocytes in vitro with ethanol and benzyl alcohol J. Exp. Zool. 226 311–314.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaufman, M. H. (1983) Early Mammalian Development: Parthenogenetic Studies Cambridge, UK, Cambridge University Press 9–16.Google Scholar
  23. 23.
    McGrath, J. and Solter, D. (1983) Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220 1300–1302.PubMedCrossRefGoogle Scholar
  24. 24.
    Stewart, C. L. (1993) Genomic imprinting in the regulation of mammalian development Adv. Dev. Biol. 2 73–118.CrossRefGoogle Scholar
  25. 25.
    Robertson, E. J. (1987) Embryo-derived stem cell lines. In Teratocarcinomas and Embryonic Stem Cells. A Practical Approach (Robertson, E. J., ed.) IRL, Oxford, U.K./Washington, DC 71–112.Google Scholar
  26. 26.
    Bishop, C. E., Boursot, P., Baron, B., Bonhomme, F., and Hatat, D. (1985) Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature 315, 70–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Evans, E. P. (1987) Karyotyping and sexing of gametes, embryos and fetuses and in situ hybridization to chromsomes. In Mammalian Development: A Practical Approach (Monk, M., ed.), IRL, Oxford, U.K./Washington DC 93–114.Google Scholar
  28. 28.
    Abbondanzo, S. J., Gadi, I., and Stewart, C. L. (1993) Derivation of embryonic stem cell lines. Methods Enzymol. 225 803–823.PubMedCrossRefGoogle Scholar
  29. 29.
    Lincoln, C. K. and Gabridge, M. G. (1998) Cell culture contamination: sources, consequences, prevention, and elimination. Methods Cell Biol. 57 49–65.PubMedCrossRefGoogle Scholar
  30. 30.
    Biggers, J. D., Whitten, W. K. and Whittingham, D. G. (1971) The culture of mouse embryos in vitro. In Methods in Mammalian Embryology (Daniels, J. C. J., ed.), Freeman, San Francisco 86–116.Google Scholar
  31. 31.
    Lawitts, J. A. and Biggers, J. D. (1993) Culture of preimplantation embryos. Methods Enzymol. 225 153–164.PubMedCrossRefGoogle Scholar
  32. 32.
    Bos-Mikich, A., Whittingham, D. G., and Jones, K. T. (1997) Meiotic and mitotic Ca2+ oscillations affect cell composition in resulting blastocysts. Dev. Biol. 182, 172–179.PubMedCrossRefGoogle Scholar
  33. 33.
    Robertson, E. J., Evans, M. J., and Kaufman, M. H. (1983) X-chromosome instability in pluripotential stem cell lines derived from parthenogenetic embryos. J. Embryol. Exp. Morphol. 74, 297–309.PubMedGoogle Scholar
  34. 34.
    McBurney, M. W. and Adamson, E. D.(1976)Studies on the activity of the X-chromosomes in female teratocarcinoma cells in culture. Cell 9 57–70.PubMedCrossRefGoogle Scholar
  35. 35.
    Martin, G. R., Epstein, C. J., Travis, B., Tucker, G., Yatsiv, S., Martin, D. W., Clift, S., and Cohen, S. (1978) X-chromosome inactivation during differentiation of female teratocarcinoma stem cells in vitro Nature 271 329–333.PubMedCrossRefGoogle Scholar
  36. 36.
    Searle, A. G.and Beechey, C. V. (1990) Genome imprinting phenomena on mouse chromosome 7 Genet. Res., Camb. 56, 237–244.CrossRefGoogle Scholar
  37. 37.
    McLaughlin, K. J., Szabó, P. E., Haegel, H., and Mann, J. R. (1996) Mouse embryos with paternal duplication of an imprinted chromosome 7 region die at midgestation and lack placental spongiotrophoblast. Development 122 265–27PubMedGoogle Scholar
  38. 38.
    Epstein, C. J. (1986) Developmental genetics. Experientia 42 1117–1128.PubMedCrossRefGoogle Scholar
  39. 39.
    McWhir, J., Schnieke, A. E., Ansell, R., Wallace, H., Colman, A., Scott, A. R., and Kind, A. J. (1996) Selective ablation of differentiated cells permits isolation of embryonic stem cell lines from murine embryos with a non-permissive genetic background Nature Genet. 14 223–226.PubMedCrossRefGoogle Scholar
  40. 40.
    Brook, F. A. and Gardner, R. L. (1997) The origin and efficient derivation of embryonic stem cells in the mouse Proc. Natl. Acad. Sci. USA 94, 5709–5712.PubMedCrossRefGoogle Scholar
  41. 41.
    Ledermann, B.and Bürki, K. (1991) Establishment of a germ-line competent C57BL/6 embryonic stem cell line. Exp. Cell Res. 197 254–258.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Jeffrey R. Mann
    • 1
  1. 1.Division of BiologyBeckman Research Institute of the City of Hope

Personalised recommendations