Skip to main content

Preparation of Proteoglycans for N-Terminal and Internal Amino Acid Sequence Analysis

  • Protocol
Book cover Proteoglycan Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 171))

  • 1207 Accesses

Abstract

Amino acid sequence analysis of proteoglycans is performed using many of the same methods that are used for conventional proteins and glycoproteins, with some specific modifications that result from the glycosaminoglycans that are attached to the protein core. Amino acid sequence analysis of proteoglycans is more challenging than for conventional proteins for two reasons. First, because proteoglycans are large molecules, they have the same problems that are inherent in sequence analysis of larger proteins. The higher molecular weight provides for relatively high levels of nonspecific cleavage of the protein during Edman chemistry, resulting in a rapidly increasing background. Second, the presence of glycosaminoglycans, which tend to bind water, can exacerbate the problem of nonspecific hydrolysis of peptide bonds to such an extent that it may be impossible to obtain an N-terminal on a proteoglycan that is over 70% glycosaminoglycan. In an ideal situation, it is difficult to determine more than 10 amino acids from the N-terminal of an intact proteoglycan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edman, P. (1956) Mechanism of the phenylisothiocyanate degradation of proteins. Nature 177, 667–668.

    Article  CAS  Google Scholar 

  2. Williams, K. R., Samander, S. M., Stone, K. L., Saylor, M., and Rush, J. (1996) Matrix-assisted laser desorption ionization mass spectrometry as a complement to internal protein sequencing, in The Protein Protocols Handbook (Walker, J. M., ed.), Humana Press, Totowa, NJ, pp. 541–555

    Chapter  Google Scholar 

  3. Fernandez, J., and Mische, S. M. (1996) Enzymatic digestion of membrane-bound proteins for peptide mapping and internal sequence analysis, in The Protein Protocols Handbook (Walker, J. M., ed.), Humana Press, Totowa, NJ, pp. 405–414.

    Chapter  Google Scholar 

  4. Stone, K. L. and Williams, K. R. (1996) Enzymatic digestion of proteins in solution and in SDS-polyacrylamide gels, in The Protein Protocols Handbook (Walker, J. M., ed), Humana Press, Totowa, NJ,, pp. 415–425.

    Chapter  Google Scholar 

  5. Stone, K. L. and Williams, K. R. (1996) Reverse-phase HPLC separation of enzymatic digests of proteins, in The Protein Protocols Handbook (Walker, J. M., ed.), Humana Press, Totowa, NJ, pp. 427–434.

    Chapter  Google Scholar 

  6. Barry, F. P., Rosenberg, L. C., Gaw, J. U., Gaw, J. U., Koob, T. J., and Neame, P. J. (1995) N-and O-linked keratan sulfate on the hyaluronan binding region of aggrecan from mature and immature bovine cartilage. J. Biol. Chem. 270, 20516–20524.

    Article  PubMed  CAS  Google Scholar 

  7. Fisher, L. W., Hawkins, G. R., Tuross, N., and Termine, J. D. (1987) Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J. Biol. Chem. 262, 9702–9708.

    PubMed  CAS  Google Scholar 

  8. Sandy, J. D., Neame, P. J., Boynton, R. E., and Flannery, C. R. (1991) Catabolism of aggrecan in cartilage explants. Identification of a major cleavage within the interglobular domain. J. Biol. Chem. 266, 8683–8685.

    PubMed  CAS  Google Scholar 

  9. Farndale, R. W., Buttle, D. J., and Barrett, A. J. (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta. 883, 173–177.

    PubMed  CAS  Google Scholar 

  10. Johnson, H. J., Rosenberg, L., Choi, H., Garza, S., Höök, M., and Neame, P. J. (1997) Characterization of epiphycan, a small proteoglycan with a leucine-rich core protein. J. Biol. Chem. 272, 18709–18717.

    Article  PubMed  CAS  Google Scholar 

  11. Fernandez, J., DeMott, M., Atherton, D., and Mische, S. M. (1992) Internal protein sequence analysis: enzymatic digestion for less than 10 μg of protein bound to polyvinyldifluoride or nitrocellulose membranes. Anal. Biochem. 201, 255–264.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Neame, P.J. (2001). Preparation of Proteoglycans for N-Terminal and Internal Amino Acid Sequence Analysis. In: Iozzo, R.V. (eds) Proteoglycan Protocols. Methods in Molecular Biology™, vol 171. Humana Press. https://doi.org/10.1385/1-59259-209-0:067

Download citation

  • DOI: https://doi.org/10.1385/1-59259-209-0:067

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-759-5

  • Online ISBN: 978-1-59259-209-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics