Skip to main content

In Vivo DNA Analysis

  • Protocol
Book cover DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 148))

Abstract

The in vivo analysis of DNA-protein interactions and chromatin structure can provide several kinds of critical information regarding regulation of gene expression and gene function. For example, DNA sequences spanned by nuclease-hypersensitive sites or bound by transcription factors often correspond to genetic regulatory elements. Using the ligation-mediated polymerase chain reaction (LMPCR) technology it is possible to map such DNA sequences and to demonstrate the existence of unusual DNA structures directly in living cells. LMPCR analyses can thus be used as a primary investigative tool to identify the regulatory sequences involved in gene expression. Once specific promoter sequence sites are shown to be bound by transcription factors in living cells, it is often possible to establish the identity of these factors simply by comparison with the consensus binding sites of known factors such as Sp1, AP-1, NF-1, and so forth. The identity of each factor can then be confirmed using in vitro gel shift (electrophoretic mobility shift assay [EMSA]) or footprinting assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfeifer, G. P., Tanguay, R. L., Steigerwald, S. D., and Riggs, A. D. (1990) In vivofootprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Dev. 4, 1277–1287.

    Article  PubMed  CAS  Google Scholar 

  2. Pfeifer, G. P. and Riggs, A. D. (1991) Chromatin differences between active and inactive X chromosomes revealed by genomic footprinting of permealized cells using DNase I and ligation-mediated PCR. Genes Dev. 5, 1102–1113.

    Article  PubMed  CAS  Google Scholar 

  3. Chen, C.-J., Li, L. J., Maruya, A., and Shively, J. E. (1995) In vitro and in vivo footprint analysis of the promoter of carcinoembryonic antigen in colon carcinoma cells: effects of interferon y treatment. Cancer Res. 55, 3873–3882.

    PubMed  CAS  Google Scholar 

  4. Tornaletti, S. and Pfeifer, G. P. (1995) UV light as a footprinting agent: modulation of UV-induced DNA damage by transcription factors bound at the promoters of three human genes. J. Mol. Biol. 249, 714–728.

    Article  PubMed  CAS  Google Scholar 

  5. Mueller P. R. and Wold, B. (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246, 780–786.

    Article  PubMed  CAS  Google Scholar 

  6. Pfeifer, G. P., Steigerwald, S. D., Mueller, P. R., Wold, B., and Riggs, A. D. (1989) Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246, 810–813.

    Article  PubMed  CAS  Google Scholar 

  7. Pfeifer, G. P., Steigerwald, S. D., Hansen, R. S., Gartler, S. M., and Riggs, A. D. (1990) Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc. Natl. Acad. Sci. USA 87, 8252–8256.

    Article  PubMed  CAS  Google Scholar 

  8. Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1992) Binding of transcription factors creates hot spots for UV photoproducts in vivo. Mol. Cell. Biol. 12, 1798–1804.

    PubMed  CAS  Google Scholar 

  9. Church, G. M. and Gilbert, W. (1984) Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  10. Pfeifer, G. P. (1992) Analysis of chromatin structure by ligation-mediated PCR. PCR Methods Appl. 2, 107–111.

    PubMed  CAS  Google Scholar 

  11. Pfeifer, G. P. and Riggs, A. D. (1993) Genomic footprinting by ligation mediated polymerase chain reaction, in PCR Protocols: Current Methods and Applications (White, B., ed.), Humana, Totowa, NJ, pp. 153–168.

    Chapter  Google Scholar 

  12. Pfeifer, G. P. and Riggs, A. D. (1993) Genomic sequencing, in DNA Sequencing Protocols (Griffin, H. G. and Griffin, A. M., eds.), Humana, Totowa, NJ, pp. 169–181.

    Chapter  Google Scholar 

  13. Pfeifer, G. P., Singer-Sam, J., and Riggs, A. D. (1993) Analysis of methylation and chromatin structure. Methods Enzymol. 225, 567–583.

    Article  PubMed  CAS  Google Scholar 

  14. Gao, S., Drouin, R., and Holmquist, G. P. (1994) DNA repair rates mapped along the human PGK1 gene at nucleotide resolution. Science 263, 1438–1440.

    Article  PubMed  CAS  Google Scholar 

  15. Tornaletti, S. and Pfeifer, G. P. (1994) Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer. Science 263, 1436–1438.

    Article  PubMed  CAS  Google Scholar 

  16. Rodriguez, H., Drouin, R., Holmquist, G. P., O’Connor, T. R., Boiteux, S., Laval, J., Doroshow, J. H., and Akman, S. A. (1995) Mapping of copper/hydrogen peroxide-induced DNA damage at nucleotide resolution in human genomic DNA by ligation-mediated polymerase chain reaction. J. Biol. Chem. 270, 17,633–17,640.

    Article  PubMed  CAS  Google Scholar 

  17. Drouin, R. and Therrien, J.-P. (1997) UVB-induced cyclobutane pyrimidine dimer frequency correlates with skin cancer mutational hotspots in p53. Photochem. Photobiol. 66, 719–726.

    Article  PubMed  CAS  Google Scholar 

  18. Rozek, D. and Pfeifer, G. P. (1993) In vivo protein-DNA interactions at the c-jun promoter: preformed complexes mediate the UV response. Mol. Cell. Biol. 13, 5490–5499.

    PubMed  CAS  Google Scholar 

  19. Cartwright, I. L. and Kelly, S. E. (1991) Probing the nature of chromosomal DNA-protein contacts by in vivo footprinting. BioTechniques 11, 188–203.

    PubMed  CAS  Google Scholar 

  20. Maxam, A. M. and Gilbert, W. (1980) Sequencing end-labeled DNA with basespecific chemical cleavages. Methods Enzymol. 65, 499–560.

    Article  PubMed  CAS  Google Scholar 

  21. Chin P. L., Momand, J., and Pfeifer, G. P. (1997) In vivo evidence for binding of p53 to consensus binding sites in the p21 and GADD45 genes in response to ionizing radiation. Oncogene 15, 87–99.

    Article  PubMed  CAS  Google Scholar 

  22. Angers, M., Drouin, R., Bachvarova, M., Paradis, I., Marceau, F., and Bachvarov, D. R. (2000) In vivo protein-DNA interactions at the kinin B1 receptor promoter: no modification upon interleukin-1 beta or lipopolysaccharide induction. J. Cell. Biochem. 78, 278–296.

    Article  PubMed  CAS  Google Scholar 

  23. Becker, M. M. and Wang, J. C. (1984) Use of light for footprinting DNA in vivo. Nature 309, 682–687.

    Article  PubMed  CAS  Google Scholar 

  24. Pfeifer, G. P. and Tornaletti, S. (1997) Footprinting with UV irradiation and LMPCR. Methods 11, 189–196.

    Article  PubMed  CAS  Google Scholar 

  25. Pfeifer, G. P., Chen, H. H., Komura, J., and Riggs, A.D. (1999) Chromatin structure analysis by ligation-mediated and terminal transferase-mediated polymerase chain reaction. Methods Enzymol. 304, 548–571.

    Article  PubMed  CAS  Google Scholar 

  26. Cadet, J., Anselmino, C., Douki, T., and Voituriez, L. (1992) Photochemistry of nucleic acids in cells. J. Photochem. Photobiol. B: Biol. 15, 277–298.

    Article  CAS  Google Scholar 

  27. Mitchell, D. L. and Nairn, R. S. (1989) The biology of the (6-4) photoproducts. Photochem. Photobiol. 49, 805–819.

    Article  PubMed  CAS  Google Scholar 

  28. Holmquist, G. P. and Gao, S. (1997) Somatic mutation theory, DNA repair rates, and the molecular epidemiology of p53 mutations. Mutat. Res. 386, 69–101.

    Article  PubMed  CAS  Google Scholar 

  29. Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1991) In vivo mapping of a DNA adduct at nucleotide resolution: detection of pyrimidine (6-4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction. Proc. Natl. Acad. Sci. USA 88, 1374–1378.

    Article  PubMed  CAS  Google Scholar 

  30. Gale, J. M. and Smerdon, M. J. (1990) UV induced (6-4) photoproducts are distributed differently than cyclobutane dimers in nucleosomes. Photochem. Photobiol. 51, 411–417.

    Article  PubMed  CAS  Google Scholar 

  31. Gale, J. M., Nissen, K. A., and Smerdon, M. J. (1987) UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases. Proc. Natl. Acad. Sci. USA 84, 6644–6648.

    Article  PubMed  CAS  Google Scholar 

  32. Mitchell, D. L., Nguyen, T. D., and Cleaver, J. E. (1990) Nonrandom induction of pyrimidine-pyrimidone (6-4) photoproducts in ultraviolet-irradiated human chromatin. J. Biol. Chem. 265, 5353–5356.

    PubMed  CAS  Google Scholar 

  33. Rigaud, G., Roux, J., Pictet, R., and Grange, T. (1991) In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liverspecific factor. Cell 67, 977–986.

    Article  PubMed  CAS  Google Scholar 

  34. Miller, M. R., Castellot, J. J., and Pardee, A. B. (1978) A permeable animal cell preparation for studying macromolecular synthesis. DNA synthesis and the role of deoxyribonucleotides in S phase initiation. Biochemistry 17, 1073–1080.

    Article  PubMed  CAS  Google Scholar 

  35. Contreras, R. and Fiers, W. (1981) Initiation of transcription by RNA polymerase II in permeable SV40-infected CV-1 cells; evidence of multiple promoters for SV40 late transcription. Nucleic Acids Res. 9, 215–236.

    Article  PubMed  CAS  Google Scholar 

  36. Tanguay, R. L., Pfeifer, G. P., and Riggs, A. D. (1990) PCR-aided DNase I footprinting of single-copy gene sequences in permeabilized cells. Nucleic Acids Res. 18, 5902.

    Article  PubMed  CAS  Google Scholar 

  37. Törmänen, V., Pfeifer, G. P., Swiderski, P. M., et al. (1992) Extension product capture improves genomic sequencing and DNase I footprinting by legation-mediated PCR. Nucleic Acids Res. 20, 5487–5488.

    Article  PubMed  Google Scholar 

  38. Tornaletti, S., Bates, S., and Pfeifer, G. P. (1996) A high-resolution analysis of chromatin structure along p53 sequences. Mol. Carcinogen. 17, 192–201.

    Article  CAS  Google Scholar 

  39. Szabo, P. E., Pfeifer, G. P., and Mann, J. R. (1998) Characterization of novel parent-specific epigenetic modifications upstream of the imprinted mouse H19gene. Mol. Cell. Biol. 18, 6767–6776.

    PubMed  CAS  Google Scholar 

  40. Garrity, P. A. and Wold, B. J. (1992) Effects of different DNA polymerases in ligation-mediated PCR: enhanced genomic sequencing and in vivo footprinting. Proc. Natl. Acad. Sci. USA 89, 1021–1025.

    Article  PubMed  CAS  Google Scholar 

  41. Hornstra, I. K. and Yang, T. P. (1994) High resolution methylation analysis of the human hypoxanthine phosphoribosyltransferase gene 5 region on the active and inactive X chromosomes: correlation with binding sites for transcription factors. Mol. Cell. Biol. 14, 1419–1430.

    PubMed  CAS  Google Scholar 

  42. Angers, M., Cloutier, J.-F., and Drouin, R. (2000) The effectiveness of Pfu exo-DNA polymerase in ligation-mediated PCR is mainly modulated by the ratio of DNA molecules per unit of enzyme. Submitted.

    Google Scholar 

  43. Drouin, R., Gao, S., and Holmquist, G. P. (1996) Agarose gel electrophoresis for DNA damage analysis, in Technologies for Detection of DNA Damage and Mutations (Pfeifer, G. P., ed.), Plenum, New York, pp.37–43.

    Google Scholar 

  44. Rychlik, W. and Rhoads, R. E. (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 17, 8543–8551.

    Article  PubMed  CAS  Google Scholar 

  45. Drouin, R., Rodriguez, H., Holmquist, G. P., and Akman, S. A. (1996) Ligation-mediated PCR for analysis of oxidative DNA damage, in Technologies for Detection of DNA Damage and Mutations (Pfeifer, G. P., ed.), Plenum, New York, pp. 211–225.

    Google Scholar 

  46. Mueller PR, Wold, B. (1991) Ligation-mediated PCR: applications to genomic footprinting. Methods 2, 20–31.

    Article  CAS  Google Scholar 

  47. Iverson, B. L. and Dervan, P. B. (1987) Adenine specific DNA chemical sequencing reaction. Nucleic Acids Res. 19, 7823–7830.

    Article  Google Scholar 

  48. Zhang, L. and Gralla, J. D. (1989) In situ nucleoprotein structure at the SV40 major late promoter: melted and wrapped DNA flank the start site. Genes Dev. 3, 1814–1822.

    Article  PubMed  CAS  Google Scholar 

  49. Rychlik, W. (1993) Selection of primers for polymerase chain reaction, in PCR Protocols: Current Methods and Applications (White, B., ed.), Humana, Totowa, NJ, pp. 31–40.

    Chapter  Google Scholar 

  50. Fry, M. and Loeb, L. A. (1994) The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc. Natl. Acad. Sci. USA 91, 4950–4954.

    Article  PubMed  CAS  Google Scholar 

  51. Hornstra, I. K. and Yang, T. P. (1992) Multiple in vivo footprints are specific to the active allele of the X-linked human hypoxanthine phosphoribosyltransferase gene 5 region: implications for X chromosome inactivation. Mol. Cell. Biol. 12, 5345–5354.

    PubMed  CAS  Google Scholar 

  52. Hornstra, I. K. and Yang, T. (1993) In vivo footprinting and genomic sequencing by ligation-mediated PCR. Anal. Biochem. 213, 179–193.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Drouin, R., Therrien, JP., Angers, M., Ouellet, S. (2001). In Vivo DNA Analysis. In: Moss, T. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 148. Humana Press. https://doi.org/10.1385/1-59259-208-2:175

Download citation

  • DOI: https://doi.org/10.1385/1-59259-208-2:175

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-625-3

  • Online ISBN: 978-1-59259-208-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics