Advertisement

Preparation of Thin-Film Frozen-Hydrated/ Vitrified Biological Specimens for Cryoelectron Microscopy

  • J. Robin Harris
  • Marc Adrian
Part of the Methods in Molecular Biology™ book series (MIMB, volume 117)

Abstract

The production of rapidly frozen thin-film unstained vitrified specimens for cryoelectron microscopy was established as a standard procedure in the early 1980s, primarily because of the persistent efforts of Jacques Dubochet and his colleagues (1-3). Many scientists have now used this approach to study thin unstained films of numerous biological samples, ranging from DNA to protein molecules and macromolecular assemblies, ribosomes, protein filaments, and microtubules, membrane systems, liposomes, and many different virus particles. Detailed surveys of the technical, methodological considerations, and applications of cryoelectron microscopy have been presented (3,4).

Keywords

Ammonium Molybdate Cryoelectron Microscopy Holey Carbon Tomato Bushy Stunt Virus Contrast Transfer Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adrian, M., Dubochet, J., Lepault, J., and McDowall, A. W. (1984) Cryo-electron microscopy of viruses. Nature 308, 32–36.PubMedCrossRefGoogle Scholar
  2. 2.
    Lepault, J., Booy, F. P., and Dubochet, J. (1983) Electron microscopy of frozen biological suspensions. J. Microsc. 129, 89–102.PubMedGoogle Scholar
  3. 3.
    Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J., McDowall, A. W., and Schultz, P. (1988) Cryo-electron microscopy of vitrified specimens. Quart. J. Biophys. 21,129–228.CrossRefGoogle Scholar
  4. 4.
    Harris, J. R. (1997) Negative Staining and Cryoelectron Microscopy: The Thin Film Techniques, in RMS Microscopy Handbook, No. 35, BIOS Scientific Publishers Ltd., Oxford, UK.Google Scholar
  5. 5.
    Journal of Structural Biology (1996) vol. 116, no.1, Special Issue: Advances in Computational Image Processing for Microscopy.Google Scholar
  6. 6.
    Frank, J. (1996) Three-Dimensional Electron Microscopy of Macromolecular Assemblies, Academic, San Diego, CA.Google Scholar
  7. 7.
    Adrian, M., Dubochet, J., Fuller, S. D., and Harris, J. R. (1998) Cryo-negative Staining. Micron 29,145–160.PubMedCrossRefGoogle Scholar
  8. 8.
    Orlova E. V., Dube, P., Harris, J. R., Beckman, E., Zemlin, F., Markl, J., and van Heel, M. (1997) Structure of keyhole limpet hemocyanin type 1 (KLH1) at 15 Å resolution by electron cryomicroscopy and angular reconstitution. J. Mol. Biol. 271,417–437.PubMedCrossRefGoogle Scholar
  9. 9.
    Cyrklaff, M., Roos, N., Gross, H., and Dubochet, J. (1994) Particle-surface interaction in thin vitrified films for cryo-electron microscopy. J. Microsc. 175,135–142.Google Scholar
  10. 10.
    Harris, J. R., Gebauer, W., Guderian, E U. M., and Markl, J. (1997) Keyhole limpet hemocyanin (KLH), I: Reassociation from Immucothel® followed by separation of KLH1 and KLH2. Micron 28, 31–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Harris, J. R., Gebauer, W., Söhngen, S. M., Nermut, M. V., and Markl, J. (1997) Keyhole limpet hemocyanin (KLH), II: Characteristic reassociation properties of purified KLH1 and KLH2. Micron 28,43–56.PubMedCrossRefGoogle Scholar
  12. 12.
    Biosset, N., Penczek, P., Taveau, J.-C., Lamy, J., Frank, J., and Lamy, L. (1995) Three-dimensional reconstruction of Androctonus australis hemocyanin labeled with a monoclonal Fab fragment. J. Struct. Biol. 115,16–29.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • J. Robin Harris
    • 1
  • Marc Adrian
    • 1
  1. 1.Institute of ZoologyUniversity of MainzMainzGermany

Personalised recommendations