X-Ray Microanalysis Techniques

  • A. John Morgan
  • Carole Winters
  • Stephen Stürzenbaum
Part of the Methods in Molecular Biology™ book series (MIMB, volume 117)


X-ray production is often the inevitable consequence of the electron irradiation of atoms, whether the atoms reside in biological or materials specimens that are either thin or infinitely thick. As long as the incident electrons are invested with sufficient kinetic energy to ionize individual atoms, X-rays will emanate from them. The technique of biological X-ray microanalysis, henceforth generically referred to as EPXMA (electron probe X-ray microanalysis), has been evolving for over 25 years, and its principles and practicalities have been described in detail on a number of occasions over that period (see [1-5] for primary sources). It is a technique that detects and measures elements within structurally defined “compartments”; it cannot distinguish “bound” from “free” elemental pools; it cannot differentiate between isotopic or redox states. The spatial resolution of EPXMA is unsurpassed by any other analytical technique that combines simultaneous compositional and morphological observation. The sensitivity of EPXMA seems impressive (10-18 to 10-19 g of an element like Ca under favorable conditions), until this is converted into a concentration value for the local analyzed compartment (about 2 mmoles/kg weight, or 200 μg/g, for Ca), which is several orders of magnitude poorer than, for example, “bulk”s analytical techniques such as atomic absorption spectrophotometry and induction coupled plasma analysis. It is worth bearing these basic facts in mind before embarking on a tortuous EPXMA study, whilst also acknowledging that trace elements may not necessarily be homogeneously distributed through a biological system: they may be localized within a certain cohort of specialized cells and/or sequestered within discrete subcellular compartments. The limiting factor for EPXMA detection is local not bulk concentration.


Electron Irradiation Liquid Cryogen Liquid Propane Induction Couple Plasma Analysis Metal Mirror 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Erasmus, D. A., ed. (1978) Electron Probe Microanalysis in Biology, Chapman and Hall, London, England.Google Scholar
  2. 2.
    Chandler, J. A. (1977) X-Ray Microanalysis in the Electron Microscope, NorthHolland, Amsterdam, Holland.Google Scholar
  3. 3.
    Hayat, M. A., ed. (1980) X-Ray Microanalysis in Biology, University Park Press, Baltimore, MD.Google Scholar
  4. 4.
    Morgan, A. J. (1985) X-Ray Microanalysis in Electron Microscopy for Biologists, Oxford University Press, Royal Microscopical Society, Oxford, England.Google Scholar
  5. 5.
    Warley, A. (1997) Practical Methods in Electron Microscopy, vol. 16 (Glauert, A. M., series ed.), Portland Press, London and Miami, p. 276.Google Scholar
  6. 6.
    Hall, T. A. and Gupta, B.L.(1983) The localization and assay of chemical elements by microprobe methods. Q. Rev. Biophys. 16, 279–339.PubMedCrossRefGoogle Scholar
  7. 7.
    Roomans, G. M. (1988) Quantitative X-ray microanalysis of biological specimens. J. Electron Microsc. Tech. 9,19–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Hall, T. A. (1989) Quantitative electron probe X-ray microanalysis in biology. Scanning Microsc. 3,461–466.Google Scholar
  9. 9.
    Roomans, G. M. (1990) The Hall Method in the quantitative X-ray microanalysis of biological specimens: a review. Scanning Microsc. 4,1055–1063.Google Scholar
  10. 10.
    Steinbrecht, R. A. and Zierold, K., eds. (1987) Cryotechniques in Biological Electron Microscopy, Springer-Verlag, Berlin, Germany.Google Scholar
  11. 11.
    Robards, A. W. and Sleytr, U. B. (1985) Low Temperature Methods in Biological Electron Microscopy, Practical Methods in Electron Microscopy, vol. 10. (Glauert, A. M., ed.). Elsevier,Amsterdam, New York, Oxford.Google Scholar
  12. 12.
    Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J., McDowall, A. W. and Schultz, P. (1988) Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228.PubMedCrossRefGoogle Scholar
  13. 13.
    Roos, N. and Morgan, A. J. (1990) Cryopreparation of Thin Biological Specimens for Electron Microscopy: Methods and Applications, Oxford University Press, Royal Microscopical Society, Oxford, England.Google Scholar
  14. 14.
    Echlin, P. (1992) Low-Temperature Microscopy and Analysis, Plenum, New York.Google Scholar
  15. 15.
    Quintana, C. (1994) Cryofixation, cryosubstitution, cryoembedding for ultrastructural, immunocytochemical and microanalytical studies. Micron. 25,63–99.PubMedCrossRefGoogle Scholar
  16. 16.
    Elder, H. Y., Nicholson, W. A. P., Mackenzie, M., and Johnson, A. D. (1997) A comparative look at microanalytical thin sample preparation problems in biology and materials science. Proc. Roy. Microsc. Soc. 31,14–19.Google Scholar
  17. 17.
    Elder, H. Y. and Bovell, D. L. (1988) Biological cryofixation: why and how?, in EUREM 88: Proc. 9th Europ. Congr. Electron Microscopy (Goodhew, P. J., ed.), Institute of Physics, Bristol, pp. 13–22.Google Scholar
  18. 18.
    Morgan, A. J. (1980) Preparation of specimens. Changes in chemical integrity, in X-Ray Microanalysis in Biology (Hayat, M. A., ed.), University Park Press, Baltimore, MD, pp. 65–165.Google Scholar
  19. 19.
    Zierold, K. (1993) Rapid freezing techniques for biological electron probe microanalysis, in X-Ray Microanalysis in Biology: Experimental Techniques and Applications (Sigee, D. C., Morgan, A. J., Sumner, A. T., and Warley, A., eds.), Cambridge University Press, Cambridge, England, pp. 101–116.CrossRefGoogle Scholar
  20. 20.
    Hagler, H. K. and Buja, L. M. (1984) New techniques for the preparation of thin freeze-dried cryosections for X-ray microanalysis, in The Science of Biological Specimen Preparation (Revel, J.-P., Barnard, T., Haggis, G. H., eds.), Scanning Electron Microscopy, AMF O’Hare, IL, pp. 161–166.Google Scholar
  21. 21.
    Ryan, K. P. and Knoll, G. (1994) Time-resolved cryofixation methods for the study of dynamic cellular events by electron microscopy: a review. Scanning Microsc. 8, 259–288.Google Scholar
  22. 22.
    Zierold, K. (1988) X-ray microanalysis of freeze-dried and frozen-hydrated cryosections. J. Electron Microsc. Tech. 9,65–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Wendt-Gallitelli, M. F. and Isenberg, G. (1989) X-ray microanalysis of single cardiac myocytes frozen under voltage-clamp conditions. Am. J. Physiol. 256, H574–H583.PubMedGoogle Scholar
  24. 24.
    Zierold, K., Gerke, I., and Schmitz, M. (1989) X-ray microanalysis of fast exocytotic processes, in Electron Probe Microanalysis Applications in Biology and Medicine(Zierold, K. and Hagler, H. K., eds.), Springer-Verlag, Berlin, Germany, pp. 281–292.Google Scholar
  25. 25.
    Roomans, G. M. (1993) Applications of X-ray microanalysis in biomedicine: an overview, in X-Ray Microanalysis in Biology: Experimental Techniques and Applications(Sigee, D. C., Morgan, A. J., Sumner, A. T., and Warley, A., eds.), Cambridge University Press, Cambridge, England, pp. 297–315.CrossRefGoogle Scholar
  26. 26.
    Warley, A. (1990) Standards for the application of X-ray microanalysis to biological specimens. J. Microsc. 157,135–147.PubMedGoogle Scholar
  27. 27.
    Morgan, A. J., Roos, N., Morgan, J. E., and Winters, C. (1989) The subcellular accumulation of toxic heavy metals: qualitative and quantitative X-ray microanalysis, in Electron Probe Microanalysis. Applications in Biology and Medicine (Zierold, K. and Hagler, H. K., eds.), Springer-Verlag, Berlin, Germany, pp. 59–72.Google Scholar
  28. 28.
    Morgan, A. J. and Winters, C. (1991) Diapause in the earthworm, Aporrectodea longa: morphological and quantitative X-ray microanalysis of cryosectioned chloragogenous tissue. Scanning Microsc. 5,219–227.Google Scholar
  29. 29.
    BéruBé, K. A., Jones, T. P., and Williamson, B. J. (1997) Electron microscopy of urban airborne particulate matter. Microsc. Analysis 61,11–13.Google Scholar
  30. 30.
    Sartori, N., Richter, K., and Dubochet, J. (1993) Vitrification depth can be increased more than 10-fold by high-pressure freezing. J. Microsc. 172,55–61.Google Scholar
  31. 31.
    Ryan, K. P. and Liddicoat, M. I. (1987) Safety considerations regarding the use of propane and other liquified gases as coolants for rapid freezing purposes. J. Microsc. 147, 337–340.PubMedGoogle Scholar
  32. 32.
    Ryan, K. P. (1992) Cryofixation of tissues for electron microscopy: a review of plunge cooling methods. Scanning Microsc. 6, 715–743.Google Scholar
  33. 33.
    Ryan, K. P. and Purse, D. H. (1984) Rapid freezing: specimen supports and cold gas layers. J. Microsc. 136, RP5–RP6.Google Scholar
  34. 34.
    Bald, W. B. (1983) Optimizing the cooling block for the quick freeze method. J. Microsc. 131, 11–23.PubMedGoogle Scholar
  35. 35.
    Chang, S. H., Mergner, W. J., Pendergrass, R. E., Bulger, R. E., Berezesky, I. K., and Trump, B. F. (1980) A rapid method of cryofixation of tissues in situ for ultracryotomy. J. Histochem. Cytochem. 28,47–51.PubMedGoogle Scholar
  36. 38.
    Zierold, K. (1993) The cryopuncher: a pneumatic cryofixation device for X-ray microanalysis of tissue specimens. J. Microsc. 171,267–272.Google Scholar
  37. 39.
    Greene, W. B. and Walsh, L. G. (1994) Cryo-jet preservation of calcium in the rat’s spinal cord. Scanning Microsc. 8,587–600.PubMedGoogle Scholar
  38. 40.
    Severs, N. J., Gourdrie, R. G., Harfst, E., Peters, N. S., and Green, C. R. (1993) Intercellular junctions and the application of microscopical techniques: the cardiac gap junction as a model. J. Microsc. 169,299–328.PubMedGoogle Scholar
  39. 41.
    Sitte, H. (1996) Advanced instrumentation and methodology related to cryoultramicrotomy: a review. Scanning Microsc. Suppl. 10, 387–466.PubMedGoogle Scholar
  40. 42.
    Hagler, H. K., Morris, A. C., and Buja, L. M. (1989) X-ray microanalysis and free calcium measurements in cultured neonatal rat ventricular myocytes, in Electron Probe Microanalysis Applications in Biology and Medicine (Zierold, K. and Hagler, H., eds.), Springer-Verlag, Berlin, Germany, pp. 181–197.Google Scholar
  41. 43.
    Steinbrecht, R. A. and Zierold, K. (1984) A cryoembedding method for cutting ultting ultrathin cryosections from small specimens. J. Microsc. 136,69–75.PubMedGoogle Scholar
  42. 44.
    Zierold, K. and Schafer, D. (1988) Preparation of cultured and isolated cells for Xray microanalysis. Scanning Microsc. 2,1775–1790.PubMedGoogle Scholar
  43. 45.
    Zierold, K. (1991) Cryofixation methods for ion localization in cells by electron probe microanalysis: a review. J. Microsc. 161, 367–366.Google Scholar
  44. 46.
    Bachmann, L (1987) Freeze-etching of dispersions, emulsions and macromolecular solutions of biological interest, in Cryotechniques in Biological Electron Microscopy(Steinbrecht, R. A. and Zierold, K., eds.), Springer-Verlag, Berlin, Germany, pp. 192–204.Google Scholar
  45. 47.
    Knoll, G., Braun, C., and Plattner, H. (1991) Quenched flow analysis of exocytosis in Paramecium cells: time course, changes in membrane structure, and calcium requirements revealed after rapid mixing and rapid freezing of intact cells. J. Cell Biol. 113,1295–1304.PubMedCrossRefGoogle Scholar
  46. 48.
    Hohenberg, H., Mannweiler, K., and Müller, M. (1994) High pressure freezing of cell suspensions in cellulose capillary tubes. J. Microsc. 175, 34–43.PubMedGoogle Scholar
  47. 49.
    Hohenberg, H., Tobler, M., and Müller, M. (1996) High-pressure freezing of tissue obtained by fine-needle biopsy. J. Microsc. 183,133–139.PubMedCrossRefGoogle Scholar
  48. 50.
    Zierold, K. (1988) Electron probe microanalysis of cryosections from cell suspensions, in Methods in Microbiology, vol. 20, Electron Microscopy in Microbiology(Mayer, F., ed.), Academic, London, England, pp. 91–111.Google Scholar
  49. 51.
    Petzinger, E. and Frimmer, M. (1988) Comparative investigations of the uptake of phallotoxins, bile acids, bovine lactoperoxidase and horseradish peroxidase into rat hepatocytes in suspension and in cell cultures. Biochim. Biophys. Acta 937,135–144.PubMedCrossRefGoogle Scholar
  50. 52.
    Pavenstädt-Grupp, I., Grupp, C., and Kinne, R. K. H. (1989) Measurement of element content in isolated papillary collecting duct cells by electron probe microanalysis. PflügArchiv E. J. Physiol. 413, 378–384.CrossRefGoogle Scholar
  51. 53.
    Edwards, P. G., Kendall, M. D., and Morris, I. W. (1991) Effect of a platinum chemotherapy drug on intracellular elements during the cell cycle, using X-ray microanalysis. Scanning Microsc. 5, 797–810.PubMedGoogle Scholar
  52. 54.
    Zglinicki von, T., Ziervogel, H., and Bimmler, M. (1989) Binding of ions to nuclear chromatin. Scanning Microsc. 3,1231–1239.Google Scholar
  53. 55.
    Zierold, K. (1989) Cryotechniques for biological microanalysis, in Microbeam Analysis 1989 (Russel, P. E., ed.), Academic, London, England, pp. 109–111.Google Scholar
  54. 56.
    Wroblewski, J. and Wroblewski, R. (1993) X-ray microanalysis of cultured mammalian cells, in X-Ray Microanalysis in Biology: Experimental Techniques and Applications (Sigee, D. C., Morgan, A. J., Sumner, A. T., and Warley, A., eds.), Cambridge University Press, Cambridge, England, pp. 317–329.CrossRefGoogle Scholar
  55. 57.
    Lechene, C. (1989) Electron probe analysis of transport properties of cultured cells, in Electron Probe Microanalysis. Applications in Biology and Medicine (Zierold, K. and Hagler, H. K., eds.), Springer-Verlag, Berlin, Germany, pp. 237–249.Google Scholar
  56. 58.
    Hajibagheri, M. A. and Flowers, T. J. (1993) Ion localisation in plant cells using the combined techniques of freeze-substitution and X-ray microanalysis, in X-Ray Microanalysis in Biology: Experimental Techniques and Applications (Sigee, D. C., Morgan, A. J., Sumner, A. T., and Warley, A., eds.), Cambridge University Press, Cambridge, England, pp. 217–230.CrossRefGoogle Scholar
  57. 59.
    Condron, R. J. and Marshall, A. T. (1990) A comparison of three low temperature techniques of specimen preparation for X-ray microanalysis. Scanning Microsc. 4, 439–447.Google Scholar
  58. 60.
    Elder, H. Y. and Wilson, S. M. (1994) Preparation methods for quantitative X-ray microanalysis of intracellular elements in ultrathin sections for transmission electron microscopy: The freeze-dry, resin-embedded route, in Cell Biology: A Laboratory Handbook (Celis, J. E., ed.), Academic, San Diego, CA, pp. 186–192.Google Scholar
  59. 61.
    Pålsgård, E., Lindh, U., and Roomans, G. M. (1994) Comparative study of freezesubstitution techniques for X-ray microanalysis of biological tissue. Microsc. Res. Tech. 28, 254–258.PubMedCrossRefGoogle Scholar
  60. 62.
    Gupta, B. L. (1991) Ted Hall and the science of biological microprobe X-ray analysis: a historial perspective of methodology and biological dividends. Scanning Microsc. 5, 379–426.PubMedGoogle Scholar
  61. 63.
    LeFurgey, A., Davilla, S. D., Kopf, D. A., Sommer, J. R., and Ingram, P. (1992) Real-time quantitative elemental analysis and mapping: microchemical imaging in cell physiology. J. Microsc. 165,191–223.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • A. John Morgan
    • 1
  • Carole Winters
    • 1
  • Stephen Stürzenbaum
  1. 1.Cardiff School of BiosciencesCardiff UniversityCardiffWales

Personalised recommendations