Advertisement

Preparation of the Fission Yeast Schizosaccharomyces pombe for Ultrastructural and Immunocytochemical Study

  • M.A. Nasser Hajibagheri
  • Kenneth Sawin
  • Steve Gschmeissner
  • Ken Blight
  • Carol Upton
Part of the Methods in Molecular Biology™ book series (MIMB, volume 117)

Abstract

The fission yeast Schizosaccharomyces pombe serves as a model system for investigating a wide variety of problems in eukaryotic cellular and molecular biology. Although probably most widely studied in relation to the control of the eukaryotic cell cycle (1) and the events of cell division (2,3), S. pombe has also received significant attention in studies of protein trafficking and secretion (4), cell wall biosynthesis (5), cellular and molecular aspects of meiosis, genetic recombination, and spore formation (6), signal transduction pathways and control of gene expression (7-10) and cell growth (11,12), cell morphology (13,14) and the cytoskeleton (15,16). In many ways we can think of S. pombe as essentially a typical eukaryote trapped inside a cell wall, and the resulting constraints on cell morphology confer on it a stereotyped cellular architecture, well suited to ultrastructural analysis. The details of this architecture at both the light- and electron-microscopic level can be found in reference (17); here we will only highlight certain features.

Keywords

Yeast Cell Fission Yeast Immunogold Labelling Schizosaccharomyces Pombe Spindle Pole Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nurse, P. (1990) Universal control mechanism regulating onset of M-phase Nature 344, 503–508.PubMedCrossRefGoogle Scholar
  2. 2.
    Yanagida, M. (1989) Gene products required for chromosome separation. J Cell Sci. Suppl. 12, 213–29.PubMedGoogle Scholar
  3. 3.
    Simanis, V. (1995) The control of septum formation and cytokinesis in fissionyeast. Semin. Cell Biol. 6, 79–87.PubMedCrossRefGoogle Scholar
  4. 4.
    Armstrong, J., Pidoux, A., Bowden, S., Craighead, M., Bone, N., and Robinson, E. (1994) The ypt proteins of Schizosaccharomycespombe. Biochem. Soc. Trans. 22, 460–463.Google Scholar
  5. 5.
    Arellano, M., Duran, A., and Perez, P. (1996) Rho1 GTPase activates the (1-3) beta-D-glucan synthase and is involved in Schizosaccharomyces pombe morphogenesis. EMBO J. 13, 4584–4591.Google Scholar
  6. 6.
    Egel, R. (1989) Mating-type genes, meiosis, and sporulation. in Molecular Biology of the Fission Yeast. Nasim, A., Young, P., and Johnson, B. F., eds. Academic Press, San Diego, pp. 31–73.Google Scholar
  7. 7.
    Hughes, D. A. (1995) Control of signal transduction and morphogenesis by Ras. Semin. Cell Biol. 6, 89–94.PubMedCrossRefGoogle Scholar
  8. 8.
    Wilkinson, M. G., Samuels, M., Takeda, T., Toone, W. M., Shieh, J. C., Toda, T., Millar, J. B., and Jones. N. (1996) The Atf 1 transcription factor is a target for the Sty1 stress-xactivated MAP kinase pathway in fission yeast. Genes Dev. 10,2289–2301.PubMedCrossRefGoogle Scholar
  9. 9.
    Sturm, S., and Okayama, H. (1996) Domains determining the functional distinction of the fission yeast cell cycle “start” molecules Res1 and Res2. Mol. Biol. Cell 7, 1967–1976.PubMedGoogle Scholar
  10. 10.
    Zhu, Y., Takeda, T., Whitehall, S., Peat, N., and Jones, N. (1997) Functional characterization of the fission yeast Start-specific transcription factor Res2. EMBO J. 16,1023–1034.PubMedCrossRefGoogle Scholar
  11. 11.
    Streiblova, E., and Wolf, A. (1972) Cell wall growth during the cell cycle of Schizosaccharomyces pombe. Zeitschrift f. Allg. Mikrobiologie 12, 673–684.CrossRefGoogle Scholar
  12. 12.
    Mitchison, J. M., and Nurse, P. (1985) Growth in cell length in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 75, 357–76.PubMedGoogle Scholar
  13. 13.
    Verde, F., Mata, J., and Nurse, P. (1995) Fission yeast cell morphogenesis: identification of new genes and analysis of their roles during the cell cycle. J. of Cell Biology 131, 1529–38.CrossRefGoogle Scholar
  14. 14.
    Snell, V., and Nurse, P. (1993) Investigations into the control of cell form and polarity: the use of morphological mutants in fission yeast. Dev. Suppl. 289–299.Google Scholar
  15. 15.
    Marks, J., Hagan, I. M., and Hyams, J. S. (1986) Growth polarity and cytokinesis in fission yeast: the role of the cytoskeleton. J. Cell Sci. Suppl. 5, 229–41.PubMedGoogle Scholar
  16. 16.
    Hagan, I. M., and Hyams, J. S., (1988) The use of cell division cycle mutants to investigate the control of microtubule distribution in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 89, 343–357.PubMedGoogle Scholar
  17. 17.
    Robinow, C. F., and Hyams, J. S. (1989) General cytology of fission yeasts. in Molecular Biology of the Fission Yeast. Nasim, A., Young, P., and Johnson, B. F., eds. Academic Press, San Diego, pp. 273–330.Google Scholar
  18. 18.
    Chang, F., and Nurse, EP. (1996) How fission yeast fission in the middle. Cell 84, 191–194.PubMedCrossRefGoogle Scholar
  19. 19.
    Tanaka, K., and Kanbe, T.(1986) Mitosis in the fission yeast S. pombe as revealed by freeze-substitution electron microscopy. J. Cell Sci. 80, 253–268.PubMedGoogle Scholar
  20. 20.
    Yamamoto, M. (1996) The molecular control mechanisms of meiosis in fission yeast. Trends Biochem. Sci. 21,18–22.PubMedGoogle Scholar
  21. 21.
    Nielsen, O., and Davey, J. (1995) Pheromone communication in the fission yeast Schizosaccharomyces pombe. Semin. Cell Biol. 6, 95–104.PubMedCrossRefGoogle Scholar
  22. 22.
    Stern, B., and Nurse, P. (1997) Fission yeast pheromone blocks S-phase progression by inhibiting the G1 cyclin B-p34cdc2 kinase. EMBO J. 16, 534–544.PubMedCrossRefGoogle Scholar
  23. 23.
    Fukui, Y., Kaziro, Y., and Yamamoto, M. (1986) Mating-pheromone-like diffusible factor released by Schizosaccharomyces pombe. EMBO J. 5, 1991–1993.PubMedGoogle Scholar
  24. 24.
    Leupold U. (1987) Sex appeal in fission yeast. Curr. Genet. 12, 543–545.CrossRefGoogle Scholar
  25. 25.
    Chikashige, Y., Ding, D. Q., Funabiki, H., Haraguchi, Y., Mashiko, S., Yanagida, M., and Hiraoka, Y. (1994) Telomere-led premeiotic chromosome movement in fission yeast. Science 264, 270–273.PubMedCrossRefGoogle Scholar
  26. 26.
    Hayles, J., and Nurse, P. (1992) Genetics of the fission yeast Schizosaccharomyces pombe. Ann. Rev. Genet. 26, 373–402.PubMedCrossRefGoogle Scholar
  27. 27.
    Hoheisel, J. D., Maier, E., Mott, R., McCarthy, L., Grigoriev, A. V., Schalkwyk, L. C., Nizetic, D., Francis, F., and Lehrach, H. (1993) High-resolution cosmid and P1-maps spanning the 14MB genome of the fission yeast S. pombe. Cell 73,109–120.PubMedCrossRefGoogle Scholar
  28. 28.
    Grimm, C., Kohli, J., Murray, J., and Maundrell, K. (1988) Genetic engineering in Schizosaccharomyces pombe a system for gene disruption and replacement using the ura4 gene as a selectable marker. Mol. Gen. Genet. 215, 81–86.PubMedCrossRefGoogle Scholar
  29. 29.
    Maundrell, K. (1993) Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene. 123, 127–130.PubMedCrossRefGoogle Scholar
  30. 30.
    Sipiczki, M. (1989) Taxonomy and phylogenesis, in Molecular Biology of the Fission Yeast. Nasim, A., Young, P., and Johnson, B. F., eds., Academic Press, San Diego, pp. 431–452.Google Scholar
  31. 31.
    Kaufer, N. F., Simanis, V., and Nurse, P. (1985) Fission yeast Schizosaccharomyces pombe correctly excises a mammalian RNA transcript intervening sequence. Nature 318, 78–80.PubMedCrossRefGoogle Scholar
  32. 32.
    Dubey, D. D., Kim, S. M., Todorov, I. T., and Huberman, J. A. (1996) Large, complex modular structure of a fission yeast DNA replication origin. Curr. Biol. 6,467–473.PubMedCrossRefGoogle Scholar
  33. 33.
    Nakaseko, Y., Adachi, Y., Funakashi, S., Niwa, O., and Yanagida, M. (1986) Chromosome walking shows highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J. 5, 1011–1021.PubMedGoogle Scholar
  34. 34.
    Moreno, S., Klar, A., and Nurse, P. (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Meth. Enzymol. 194, 795–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Ayscough, K., Hajibagheri, N. M., Watson, R., and Warren, G. (1993) Stacking of Golgi cisternae in Schizosaccharomyces pombe requires intact microtubules. J. Cell Sci. 106, 1227–1237.PubMedGoogle Scholar
  36. 36.
    Ruhrberg C., Hajibagheri, M. A. N., Simon, M., Dooley, T., and Watt, F. M. (1996). Envoplakin, a novel precursor of the cornified envelope that has homo-logy to desmoplakin. J. CellBiol. 134(3), 715–29, 1996.CrossRefGoogle Scholar
  37. 37.
    Ruhrberg, C., Hajibagheri, M. A. N., Parry, D. M., and Watt, F. M. (1997) Periplakin, a novel component cornified envelopes and desmosomes that belongs to the plakin family and forms complexes with envoplakin. J. Cell Biol. 139,1835–1849.PubMedCrossRefGoogle Scholar
  38. 38.
    Chappell, T. J., Hajibagheri, M. A., Ayscough, K., Pierce, M., and Warren, G. (1994) Localization of an 1, 2 galactosyltransferase activity to the Golgi apparatus of Schizosaccharomyces pombe. Mol. Biol. Cell 5, 519–528.PubMedGoogle Scholar
  39. 39.
    Goode, N. T, Hajibagheri, M. A. N., Warren, G. B., and Parker, P. J. (1994) Expression of mammalian protein kinase C in Schizosaccharomyces pombe: isotype specific induction of growth arrest, vesicle formation and endocytosis. Mol. Biol. Cell 5, 907–920.PubMedGoogle Scholar
  40. 40.
    Goode, N. T., Hajibagheri, M. A. N., and Parker, P. J. (1995) Protein Kinase C (PKC)-induced PKC Down. J. Biol. Chem. 27, 2669–2673.Google Scholar
  41. 41.
    Dittie, A., Hajibagheri, M. A. N., and Tooze, S. (1996) The Ap-1 adaptor complex binds to immature secretory granules from PC 12 cells and is regulated by ADP-ribosylation factor. J. Cell Biol. 132, 523–536.PubMedCrossRefGoogle Scholar
  42. 42.
    Whitehouse, C., Burchell, J., Gschmeissner, S., Brockhausen, I., Lloyd, K. O., Taylor-Papadimitriou, J. (1997). A transfected sialyltransferase that is elevated in breast cancer and localizes to the medial/trans Golgi apparatus inhibits the development of core-2-based O-glycans.J. CellBiol. 137(6), 1229–41.CrossRefGoogle Scholar
  43. 43.
    James, C., Gschmeissner, S., Fraser, A., Evan, G. I. (1997) CED-4 induces chro-matin condensation in Schizosaccharomyces pombe and is inhibited by direct physical association with CED-9. Curr. Biol. 7(4), 246–52.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • M.A. Nasser Hajibagheri
    • 1
  • Kenneth Sawin
    • 2
  • Steve Gschmeissner
    • 1
  • Ken Blight
    • 1
  • Carol Upton
    • 1
  1. 1.Electron Microscopy UnitImperial Cancer Research FundLondon
  2. 2.Cell Cycle LaboratoryImperial Cancer Research FundLondon

Personalised recommendations