Skip to main content

Transglutaminase-Catalyzed Formation of Alzheimer-Like Insoluble Complexes from Recombinant Tau

  • Protocol
  • 931 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 32))

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease in which abnormal filamentous inclusions accumulate in dystrophic and dying nerve cells. These inclusions have been described as neurofibrillary tangles (NFTs) of which paired helical filaments (PHFs) are the primary constituents (1-3). The PHFs primarily are composed of the microtubule-associated protein tau, which has undergone posttranslational modification such as phosphorylation (4,5), glycation (6-9), and crosslinking by transglutaminase (TGase) (10-16). Crosslinking of proteins catalyzed by TGase results in the deposition of these proteins into insoluble matrices that are resistant to proteolytic digestion and chaotropic denaturation (for review see ref. 17). In this regard, TGase has been demonstrated to be associated with NFTs from the Alzheimer brain (13,14) and to exhibit elevated activity in the AD brain as compared with normal aged-matched control subjects (16). Here we discuss important aspects of TGase and in vitro experimental approaches that address its ability to catalyze the tau protein into insoluble complexes exhibiting biophysical and immuno-logical properties similar to those of the Alzheimer PHFs and NFTs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kidd, M. (1963) Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 197, 192–193.

    Article  CAS  PubMed  Google Scholar 

  2. Terry, R. D., Gonatas, N. K., and Weiss, M. (1964) Ultrastructural studies in Alzheimer’s presenile dementia. Am. J. Pathol. 44, 269–297.

    CAS  PubMed  Google Scholar 

  3. Wisniewski, H. M., Narang, H. K., and Terry, R. D. (1976) Neurofibrillary tangles of paired helical filaments. J. Neurol. Sci. 27,173–181.

    Article  CAS  PubMed  Google Scholar 

  4. Greenberg, S. G. and Davies, P. (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau-proteins by polyacrylamide-gel electrophoresis. Proc. Natl. Acad. Sci. USA 87, 5827–5831.

    Article  CAS  PubMed  Google Scholar 

  5. Lee, V. M.-Y., Balin, B. J., Otvos, L., and Trojanowski, J. Q. (1991) A68-a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251,675–678.

    Article  CAS  PubMed  Google Scholar 

  6. Ledesma, M. D., Bonay, P., Colaco, C., and Avila, J. (1994) Analysis of microtu-bule-associated protein tau glycation in paired helical filaments. J. Biol. Chem. 269,21,614–21,619.

    CAS  PubMed  Google Scholar 

  7. Yan, S.-D., Chen, X., Schmidt, A.-M., Brett, J., Godman, G., Zou, Y.-S., et al. (1994) Glycated tau protein in Alzheimer’s disease: a mechanism for induction of oxidant stress. Proc. Natl. Acad. Sci. USA 91, 7787–7791.

    Article  CAS  PubMed  Google Scholar 

  8. Smith, M. A., Sayre, L. M., Monnier, V. M., and Perry, G. (1995) Radical AGEing in Alzheimer disease. Trends Neurosci. 18, 172–176.

    Article  CAS  PubMed  Google Scholar 

  9. Smith, M. A., Siedlak, S. L., Richey, P. L., Nagaraj, R. H., Elhammer, A., and Perry, G. (1996) Quantitative solubilization and analysis of insoluble paired helical filaments from Alzheimer disease. Brain Res. 717, 99–108.

    Article  CAS  PubMed  Google Scholar 

  10. Selkoe, D. J., Abraham, C., and Ihara, Y. (1982a) Brain TGase: in vitro crosslinking of human neurofilament proteins into insoluble polymers. Proc. Natl. Acad. Sci. USA 79,6070–6074.

    Article  CAS  PubMed  Google Scholar 

  11. Selkoe, D. J., Ihara, Y., and Salazar, F. J. (1982b) Alzheimer’s disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Science 215,1243–1245.

    Article  CAS  PubMed  Google Scholar 

  12. Miller, M. L. and Johnson, G. W. (1995) Transglutaminase cross-linking of the x protein. J. Neurochem. 65, 1760–1770.

    Article  CAS  PubMed  Google Scholar 

  13. Appelt, D. M., Kopen, G. C., Boyne, L. J., and Balin, B. J. (1996a) Localization of transglutaminase in hippocampal neurons: implications for Alzheimer’s disease. J. Histochem. Cytochem. 44,1421–1427.

    CAS  PubMed  Google Scholar 

  14. Appelt, D. M., Howard, M. P., Loewy, A. G., and Balin, B. J. (1996b) Insoluble NFTs from Alzheimer disease contain transglutaminase-catalyzed Glu-Lys bonds as revealed by their sensitivity to a novel isopeptidase. Soc. Neuroscience Abstr. 22, 559.9.

    Google Scholar 

  15. Appelt, D. M. and Balin, B. J. (1997) The association of tissue transglutaminase with human recombinant tau results in the formation of insoluble filamentous structures. Brain Res. 745, 21–31.

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, G. V. W., Cox, T. C., Lockhart, J. P., Zinnerman, M. D., Miller, M. L., and Powers, R. E. (1997) Transglutaminase activity is increased in Alzheimer’s disease brain. Brain Res. 751, 323–329.

    Article  CAS  PubMed  Google Scholar 

  17. Hand, D., Perry, M. J. M., and Haynes, L. W. (1993) Cellular TGases in neural development. Int. J. Devel. Neurosci. 11,709–720.

    Article  CAS  Google Scholar 

  18. Folk, J. E. and Finlayson, J. S. (1977) The ε-(gamma-glutamyl)lysine cross-link and the catalytic role of Tgases. Adv. Protein Chem. 31, 1–133.

    Article  CAS  PubMed  Google Scholar 

  19. Lorand, L. (1988) TGase-mediated cross-linking of proteins and cell aging: the erythrocyte and lens models. Adv. Exp. Med. Biol. 231, 79–94.

    CAS  PubMed  Google Scholar 

  20. Fesus, L., Thomazy, V., and Falus, A. (1987) Induction and activation of tissue TGase during programmed cell death. FEBS Lett. 244, 104–108.

    Article  Google Scholar 

  21. Gilad, G. M. and Kupmar, V. (1982) Absence of functional recovery after spinal hemisections in mice genetically deficient in hemolytic complement. Exp. Neurol. 767, 666–669.

    Article  Google Scholar 

  22. Gilad, G. M. and Varon, L. E. (1985) TGase activity in rat brain: characterization, distribution and changes with age. J. Neurochem. 45,1522–1526.

    Article  CAS  PubMed  Google Scholar 

  23. Byrd, J. C. and Lichti, U. (1987) Two types of TGase in the PC12 pheochromocy-toma cell line. Stimulation by sodium butyrate. J. Biol. Chem. 262,11,699–11,705.

    CAS  PubMed  Google Scholar 

  24. Miller, C. J. and Anderton, B. H. (1986) TGase and the neuronal cytoskeleton in Alzheimer’s disease. J. Neurochem. 46,1912–1922.

    Article  CAS  PubMed  Google Scholar 

  25. Dudek, S. M. and Johnson, G. V. W. (1993) TGase catalyzes the formation of sodium dodecylsulfate-insoluble, Alz 50-reactive polymers of tau. J. Neurochem. 61, 1159–1162.

    Article  CAS  PubMed  Google Scholar 

  26. Benzing, W. C., Ikonomovic, I. M., Brady, D. R., Mufson, E. J., and Armstrong, D. M. (1993) Evidence that transmitter-containing dystrophic neurites precede paired helical filaments and Alz-50 formation within senile plaques in the amygdala of nondemented elderly and patients with Alzheimers disease. J. Comp. Neurol. 224, 176–191.

    Article  Google Scholar 

  27. Hyman, B. T., Van Hoesen, G. W., Wolozin, B. L., Davies, P., Kromer, J. L., and Damasio, A. R. (1988) Alz-50 antibody recognizes Alzheimer-related neuronal changes. Ann. Neurol. 23, 371–379.

    Article  CAS  PubMed  Google Scholar 

  28. Carmel, G., Mager, E. M., Binder, L. J., and Kuret, J. (1996) The structural basis of monoclonal antibody Alz50’s selectivity for Alzheimer’s disease pathology. J. Biol. Chem. 271, 32789–32795.

    Article  CAS  PubMed  Google Scholar 

  29. Gache, Y., Guilleminot, J., Ricolfi, F., Theiss, G., and Nunez, J. (1992) A tau-related protein of 130 kDa is present in Alzheimer brain. J. Neurochem. 58, 2005–2010.

    Article  CAS  PubMed  Google Scholar 

  30. Barsigian, C, Stern, A. M., and Martinez, J. (1991) Tissue (type II) transglutaminase covalently incorporates itself, fibrinogen, or fibronectin into high molecular weight complexes on the extracellular surface of isolated hepatocytes. J. Biol. Chem. 266, 22,501–22,509.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Balin, B.J., Appelt, D.M. (2000). Transglutaminase-Catalyzed Formation of Alzheimer-Like Insoluble Complexes from Recombinant Tau. In: Hooper, N.M. (eds) Alzheimer's Disease. Methods in Molecular Medicine™, vol 32. Humana Press. https://doi.org/10.1385/1-59259-195-7:395

Download citation

  • DOI: https://doi.org/10.1385/1-59259-195-7:395

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-737-3

  • Online ISBN: 978-1-59259-195-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics