Skip to main content

Normal Proteolytic Processing of the Presenilins

  • Protocol
Alzheimer's Disease

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 32))

  • 969 Accesses

Abstract

The majority of familial Alzheimer’s disease (AD) cases are linked to mutations of the presenilin 1 and 2 (PS1, PS2) genes on chromosomes 14 and 1, respectively (1-3). PS1 and PS2 are about 67% identical in amino acid sequence. Based on hydrophobicity analysis, the presenilins are predicted to have multiple transmembrane domains. Structural analysis (see Chapter 19}) suggest that presenilins are 6-8 transmembrane proteins which are located in the endoplasmic reticulum (ER) and Golgi. The N- and C-termini and the large hydrophilic loop region are oriented to the cytoplasm (4,5). More than 40 AD-causing mutations have been identified in PS1, whereas only two mutations have been identified in PS2. The disease-causing mutations span most domains of the protein, with clusters of mutations in the second transmembrane domain and the large hydrophilic loop region Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754–760.

    Article  CAS  PubMed  Google Scholar 

  2. Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269, 973–977.

    Article  CAS  PubMed  Google Scholar 

  3. Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., et al. (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s type 3 gene. Nature 376, 775–778.

    Article  CAS  PubMed  Google Scholar 

  4. Doan, A., Thinakaran, G., Borchelt, D. R., Slunt, H. H., Ratovski, T., Podlisny, M., et al. (1996) Protein topology of presenilin 1. Neuron 17, 1023–1030.

    Article  CAS  PubMed  Google Scholar 

  5. Li, X. and Greenwald, I. (1996) Membrane topology of the C. elegans SEL-12 presenilin. Neuron 17, 1015–1021.

    Article  CAS  PubMed  Google Scholar 

  6. Busciglio, J., Hartmann, H., Lorenzo, A., Wong, C, Baumann, K.-H., Sommer, B., et al. (1997) Neuronal localization of presenilin 1 and association with amyloid plaques and neurofibrillary tangles in Alzheimer’s disease. J. Neurosci. 17, 5101–5107.

    CAS  PubMed  Google Scholar 

  7. Thinakaran, G., Borchelt, D. R., Lee, M. K., Ratovski, T., Davenport, F., Nordstedt, C., et al. (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17, 181–190.

    Article  CAS  PubMed  Google Scholar 

  8. Mercken, M., Takahashi, H., Honda, T., Sato, K., Murayama, M., Nakazato, Y., et al. (1996) Characterization of human presenilin using N-terminal specific monoclonal antibodies: evidence that Alzheimer mutations affect proteolytic processing. FEBS Lett. 389, 297–303.

    Article  CAS  PubMed  Google Scholar 

  9. Kim, T.-W., Pettingell, W. H., Hallmark, O. G., Moir, R. D., Wasco, W., and Tanzi, R. E. (1997) Endoproteolytic cleavage and proteasomal degradation of presenilin 2 in transfected cells. J. Biol. Chem. 272, 11,006–11,010.

    Article  CAS  PubMed  Google Scholar 

  10. Thinakaran, G., Harris, C. L., Ratovitski, T., Davenport, F., Slunt, H. H., Price, D. L., et al. (1997) Evidence that levels of presenilins (PS 1 and PS2) are coordinately regulated by competition for limiting cellular factors. J. Biol. Chem. 272, 28,415–28,422.

    Article  CAS  PubMed  Google Scholar 

  11. Ratkovsi, T., Slunt, H. H., Thinakaran, G., Price, D. L., Sisodia, S. S., and Borchelt, D. R. (1997) Endoproteolytic processing and stabilization of wild-type and mutant presenilin. J. Biol. Chem. 272, 11,006–11,010.

    Article  Google Scholar 

  12. Hartmann, H., Busciglio, J., and Yankner, B. A. (1998) Neuronal regulation of presenilin-1 processing, in Presenilins and Alzheimer’s Disease (Younkin, S. G., Tanzi, R. E., and Christen, Y., eds.), Foundation Ipsen, Springer-Verlag, Heidelberg, Germany, pp. 85–91.

    Google Scholar 

  13. Podlisny, M. B., Citron, M., Amarante, P., Sherrington, R. Xia, W., Zhang, J., et al. (1997) Neurobiol. Dis. 3, 325–337.

    CAS  Google Scholar 

  14. Shirotani, K., Takahashi, K., Ozawa, K., Kunishita, T., and Tabira, T. (1997) Determination of a cleavage site of presenilin 2 protein in stably transfected SH-S Y5 Y human neuroblastoma cell lines. Biochem. Biophys. Res. Commun. 240, 728–731.

    Article  CAS  PubMed  Google Scholar 

  15. Hartmann, H., Busciglio, J., Baumann, K.-H., Staufenbiel, M., and Yankner, B. A. (1997) Developmental regulation of presenilin-1 processing in the brain suggests a role in neuronal differentiation. J. Biol. Chem. 272, 14,505–14,508.

    Article  CAS  PubMed  Google Scholar 

  16. Capell, A., Saffrich, R., Olivo, J.-C., Meyn, L., Walter, J., Grünberg, J.,et al. (1997) Cellular expression and proteolytic processing of presenilin proteins is developmentally regulated during neuronal differentiation. J. Neurochem. 69, 2432–2440.

    Article  CAS  PubMed  Google Scholar 

  17. Hartmann, H., Busciglio, B., Zhang, Z., Baumann, K.-H., Staufenbiel, M., and Yankner, B. A. (1997) Developmental regulation of presenilin-1 cleavage in the brain. Soc. Neurosci. Abstr. 117, 6.

    Google Scholar 

  18. Murayama, O., Honda, T., Mercken, M., Murayama, M., Yasutake, K., Nihonmatsu, N., et al. (1997) Different effects of Alzheimer-associated mutations of presenilin-1 on ist processing. Neurosci. Lett. 229, 61–64.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, T.-W., Pettingell, W. H., Jung, Y.-K., Kovacs, D., and Tanzi, R. E. (1997) Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science 277, 373–376.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, M. K., Borchelt, D. R., Kim, G., Thinakaran, G., Slunt, H. H., Ratovitski, T., et al. (1997) Hyperaccumulation of FAD-linked presenilin-1 variants in vivo. Nat. Med. 3, 756–760.

    Article  CAS  PubMed  Google Scholar 

  21. Hartmann, H., Busciglio, J., Wong, C., Staufenbiel, M., and Yankner, B. A. (1996) Apoptosis and the Alzheimer’s disease gene presenilin-1. Soc. Neurosci. Abstr. 293.13.

    Google Scholar 

  22. Okochi, M., Ishii, K., Usami, M., Sahara, N., Kametani, F., Tanaka, K., et al. (1997) Proteolytic processing of presenilin-1 (PS1) is not associated with Alzheimer’s disease with or without PS 1-mutations. FEBS Lett. 418, 162–166.

    Article  CAS  PubMed  Google Scholar 

  23. Levey, A. I., Heilman, C. J., Lah, J. J., Nash, N. R., Rees, H. D., Wakai, M., et al. (1997) Presenilin-1 protein expression in familial and sporadic Alzheimer’s disease. Ann. Neurol. 41, 7742–753.

    Article  Google Scholar 

  24. Levitan, D., Doyle, T. G., Brousseau, D., Lee, M. K., Thinakaran, G., Slunt, H. H., et al. (1996) Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 93, 14,940–14,944.

    Article  CAS  PubMed  Google Scholar 

  25. Baumeister, R., Leimer, U., Zweckbronner, I., Jakubek, C., Grünberg, J., and Haass, C. (1997) Human presenilin-1, but not familial Alzheimer’s disease (FAD) mutants, facilitate Caenorhabditis elegans notch signalling independently of proteolytic processing. Genes Funct. 1, 149–159.

    Article  CAS  PubMed  Google Scholar 

  26. Capell, A., Grünberg, J., Pesold, B., Diehlmann, A., Citron, M., Nixon, R., et al. (1998) The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100-150 kD molecular mass complex. J. Biol. Chem. 273, 3205–3211.

    Article  CAS  PubMed  Google Scholar 

  27. Vito, P., Lacana, E., and D’Adamio, L. (1996) Interfering with apoptosis: Ca2+-binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science 271, 521–525.

    Article  CAS  PubMed  Google Scholar 

  28. Wolozin, B., Iwasaki, K., Vito, P., Ganjei, J. K., Lacana, E., Sunderland, T., Zhao, B., Kusiak, J. W., Wasco, W., and D’Adamio, L. (1996) Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 274, 1710–1712.

    Article  CAS  PubMed  Google Scholar 

  29. Hardy, J. (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci. 20, 154–159.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hartmann, H., Yankner, B.A. (2000). Normal Proteolytic Processing of the Presenilins. In: Hooper, N.M. (eds) Alzheimer's Disease. Methods in Molecular Medicine™, vol 32. Humana Press. https://doi.org/10.1385/1-59259-195-7:297

Download citation

  • DOI: https://doi.org/10.1385/1-59259-195-7:297

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-737-3

  • Online ISBN: 978-1-59259-195-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics