Skip to main content

Protein Stabilization by Naturally Occurring Osmolytes

  • Protocol
Protein Structure, Stability, and Folding

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 168))

Abstract

Natural selection is believed to be an unforgiving and relentless force in the evolution of life on earth. An organism that cannot adapt to a changing environment or an environment hostile to cell functions is at risk as a species. So it is important to understand the mechanisms used by plants, animals, and microorganisms in adapting to environments in the biosphere that would ordinarily denature proteins or otherwise cause disruption of life-giving cellular processes. These hostile environments involve such stresses as extremes of temperature, cellular dehydration, desiccation, high extracellular salt environments, and even the presence of denaturing concentrations of urea inside cells (1). It has been recognized for some time that many plants, animals, and microorganisms that have adapted to environmental extremes also accumulate significant intracellular concentrations of small organic molecules (14). From these (and other) observations comes the hypothesis that these small organic molecules, called osmolytes, have the ability to protect the cellular components against denaturing environmental stresses (15). In this chapter, we seek to understand the molecular-level phenomena involving proteins and the naturally occurring osmolytes that result in the stabilization of proteins against denaturation stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., and Somero, G. N. (1982) Living with water stress: evolution of osmolyte systems. Science 217, 1214–1222.

    Article  PubMed  CAS  Google Scholar 

  2. Stewart, J. A. and Ouellet, L. (1959) Can. J. Chem. 37, 744–750.

    Article  CAS  Google Scholar 

  3. Brown, A. D. and Simpson, J. R. (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J. Gen. Microbiol. 72, 589–591.

    PubMed  CAS  Google Scholar 

  4. Pollard, A. and Wyn Jones, R. G. (1979) Planta. 144, 291–298.

    Article  CAS  Google Scholar 

  5. Borowitzka, L. J. and Brown, A. D. (1974) The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute. Arch. Microbiol. 96, 37–52.

    Article  CAS  Google Scholar 

  6. Roser, B. (1991) BioPharm. 4, 47–53.

    CAS  Google Scholar 

  7. Crowe, J. H. (1971) Am. Nat. 105, 563–573.

    Article  Google Scholar 

  8. Yancey, P. H. and Somero, G. N. (1980) J. Exp. Zool. 212, 205–213.

    Article  CAS  Google Scholar 

  9. Somero, G. N. (1986) Protons, osmolytes, and fitness of internal milieu for protein function. Am. J. Physiol. 251, R197–R213.

    PubMed  CAS  Google Scholar 

  10. Clark, M. E. (1985) The osmotic role of amino acids discovery amd function, in Transport Processes, Iono-and Osmoregulation (Gilles, R. and Gilles-Baillien, M., eds.), Springer-Verlag, Berlin Heidelberg, pp. 412–423.

    Google Scholar 

  11. Yancey, P. H. and Somero, G. N. (1979) Counteraction of urea desta-bilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem. J. 183, 317–323.

    PubMed  CAS  Google Scholar 

  12. Forster, R. P. and Goldstein, L. (1976) Intracellular osmoregulatory role of amino acids and urea in marine elasmobranchs. Amer. J. Physiol. 230, 925–931.

    PubMed  CAS  Google Scholar 

  13. Arakawa, T., Bhat, R., and Timasheff, S. (1990) Why preferential hydration does not always stabilize the native structure of globular proteins. Biochemistry 29, 1924–1931.

    Article  PubMed  CAS  Google Scholar 

  14. Arakawa, T. and Timasheff, S. N. (1982) Preferential interactions of proteins with salts in concentrated solutions. Biochemistry 21, 6545–6552.

    Article  PubMed  CAS  Google Scholar 

  15. Arakawa, T. and Timasheff, S. N. (1982) Stabilization of protein structure by sugars. Biochemistry 21, 6536–6544.

    Article  PubMed  CAS  Google Scholar 

  16. Arakawa, T. and Timasheff, S. N. (1983) Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Arch. Biochem. Biophys. 224, 169–177.

    Article  PubMed  CAS  Google Scholar 

  17. Arakawa, T. and Timasheff, S. N. (1984) Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry 23, 5912–5923.

    Article  PubMed  CAS  Google Scholar 

  18. Arakawa, T. and Timasheff, S. N. (1984) Protein stabilization and destabilization by guanidinium salts. Biochemistry 23, 5924–5929.

    Article  PubMed  CAS  Google Scholar 

  19. Arakawa, T. and Timasheff, S. N. (1984) The mechanism of action of Na glutamate, lysine HCl, and piperazine-N,N’-bis(2-ethanesulfonic acid) in the stabilization of tubulin and microtubule formation. J. Biol. Chem. 259, 4979–4986.

    PubMed  CAS  Google Scholar 

  20. Arakawa, T. and Timasheff, S. N. (1985) The stabilization of proteins by osmolytes. Biophys. J. 47, 411–414.

    Article  PubMed  CAS  Google Scholar 

  21. Lee, J. C. and Lee, L. L.-Y. (1981) Preferential solvent interactions between proteins and polyethylene glycols. J. Biol. Chem. 256, 625–631.

    PubMed  CAS  Google Scholar 

  22. Lee, L. L.-Y. and Lee, J. C. (1987) Thermal stability of proteins in the presence of poly(ethylene glycols). Biochemistry 26, 7813–7819.

    Article  PubMed  CAS  Google Scholar 

  23. Timasheff, S. N. (1993) The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22, 67–97.

    Article  PubMed  CAS  Google Scholar 

  24. Timasheff, S. N. (1994) Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein. Biochemistry 33, 12,695–12,701.

    Article  PubMed  Google Scholar 

  25. Lee, J. C. and Timasheff, S. N. (1981) The stabilization of proteins by sucrose. J. Biol. Chem. 256, 7193–7201.

    PubMed  CAS  Google Scholar 

  26. Arakawa, T., Bhat, R., and Timasheff, S. (1990) Preferential interactions determine protein solubility in three-component solutions: the MgCl2 system. Biochemistry 29, 1914–1923.

    Article  PubMed  CAS  Google Scholar 

  27. Liu, Y. and Bolen, D. W. (1995) The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry 34, 12,884–12,891.

    Article  PubMed  CAS  Google Scholar 

  28. Qu, Y., Bolen, C. L., and Bolen, D. W. (1998) Osmolyte-driven contraction of a random coil protein. Proc. Natl. Acad. Sci. USA 95, 9268–9273.

    Article  PubMed  CAS  Google Scholar 

  29. Wang, A. and Bolen, D. W. (1997) A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry 36, 9101–9108

    Article  PubMed  CAS  Google Scholar 

  30. Lin, T.-Y. and Timasheff, S. N. (1994) Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein. Biochemistry 33, 12,695–12,701.

    Article  PubMed  CAS  Google Scholar 

  31. Cohn, E. J. and Edsall, J. T. (1943) Interaction between organic solvents and dipolar ions estimated from solubility ratios, in Proteins, Amino Acids, and Peptides as Ions and Dipolar Ions, Reinhold Publishing Corp., New York, NY.

    Google Scholar 

  32. Nozaki, Y. and Tanford, C. (1963) J. Biol. Chem. 238, 4074–4080.

    PubMed  CAS  Google Scholar 

  33. Robinson, D. R. and Jencks, W. P. (1965) J. Am. Chem. Soc. 87, 2462–2470

    Article  PubMed  CAS  Google Scholar 

  34. McMeekin, T. L., Cohn, E. J., and Weare, J. H. (1935) J. Am. Chem. Soc. 57, 626–633.

    Article  CAS  Google Scholar 

  35. McMeekin, T. L., Cohn, E. J., and Weare, J. H. (1936) J. Amer. Chem. Soc. 58, 2173–2181.

    Article  CAS  Google Scholar 

  36. Uedaira, H. (1972) Bul. Chem. Soc. Jpn. 45, 3068–3072.

    Article  CAS  Google Scholar 

  37. Uedaira, H. (1977) Bul. Chem. Soc. Jpn. 50, 1298–1304.

    Article  CAS  Google Scholar 

  38. Nozaki, Y. and Tanford, C. (1965) The solubility of amino acids and related compounds in aqueous thylene glycol solutions. J. Biol. Chem. 240, 3568–3573.

    PubMed  CAS  Google Scholar 

  39. Nozaki, Y. and Tanford, C. (1970) The solubility of amino acids, diglycine, and triglycine in aqueous guanidine hydrochloride solutions. J. Biol. Chem. 245, 1648–1652.

    PubMed  CAS  Google Scholar 

  40. Nozaki, Y. and Tanford, C. (1971) The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of ahydrophobicity scale. J. Biol. Chem. 246, 2211–2217.

    PubMed  CAS  Google Scholar 

  41. Tanford, C. (1970) Protein denaturation. Theoretical models for the mechanism of denaturation, in Adv. Protein Chem. vol. 24, Academic Press, New York, NY, pp. 1–95.

    Google Scholar 

  42. Robinson, D. R. and Jencks, W. P. (1965) J. Am. Chem. Soc. 87, 2470–2479.

    Article  PubMed  CAS  Google Scholar 

  43. Staniforth, R. A., Burston, S. G., Smith, C. J., Jackson, G. S., Badcoe, I. G., Atkinson, T., et al. (1993) The energetics and cooperativity of protein folding: a simple experimental analysis based upon the solva-tion of internal residues. Biochemistry 32, 3842–3851.

    Article  PubMed  CAS  Google Scholar 

  44. Pace, C. N. (1975) The stability of globular proteins. CRC Crit. Rev. Biochem. 3, 1–43.

    Article  PubMed  CAS  Google Scholar 

  45. Edsall, J. T. and Wyman, J. (1958) Biophysical Chemistry, I, Academic Press Inc., London.

    Google Scholar 

  46. Lapanje, S., Skerjanc, J., Glavnik, S., and Zibret, S. (1978) J. Chem. Thermodynamics 10, 425–433.

    Article  CAS  Google Scholar 

  47. Nandi, P. K. and Robinson, D. R. (1984) Effects of urea and guanidine hydrochloride on peptide and nonpolar groups. Biochemistry 23, 6661–6668.

    Article  PubMed  CAS  Google Scholar 

  48. Schrier, M. Y. and Schrier, E. E. (1976) Transfer free energies and average static accessibilities for ribonuclease A in guanidinium hydrochloride and urea solutions. Biochemistry 15, 2607–2612.

    Article  PubMed  CAS  Google Scholar 

  49. Tanford, C. (1964) J. Am. Chem. Soc. 86, 2050–2059.

    Article  CAS  Google Scholar 

  50. Wetlaufer, D. B., Malik, S. K., Stoller, L., and Coffin, R. L. (1964) J. Am. Chem. Soc. 86, 508–514.

    Article  CAS  Google Scholar 

  51. Alonso, D. and Dill, K. (1991) Solvent denaturation and stabilization of globular proteins. Biochemistry 30, 5974–5985.

    Article  PubMed  CAS  Google Scholar 

  52. Schönert, H. and Stroth, L. (1981) Biopolymers 20, 817–831.

    Article  Google Scholar 

  53. Kauzmann, W. (1959) Some factors in the interpretation of protein denaturation, in Adv. in Prot. Chem. vol. 14, Academic Press, New York, NY, pp. 1–63.

    Google Scholar 

  54. Chothia, C. (1975) J. Mol. Biol. 105, 1–14.

    Article  Google Scholar 

  55. Lesser, G. J. and Rose, G. D. (1990) Hydrophobicity of amino acid subgroups in proteins. Proteins Struct. Funct. Genet. 8, 6–13.

    Article  PubMed  CAS  Google Scholar 

  56. Lee, B. and Richards, F. M. (1971) The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400.

    Article  PubMed  CAS  Google Scholar 

  57. Creamer, T. P., Srinivasan, R., and Rose, G. D. (1997) Modeling unfolded states of proteins andpeptides. II. Backbone solvent accessibility. Biochemistry 36, 2832–2835.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Bolen, D.W. (2001). Protein Stabilization by Naturally Occurring Osmolytes. In: Murphy, K.P. (eds) Protein Structure, Stability, and Folding. Methods in Molecular Biology™, vol 168. Humana Press. https://doi.org/10.1385/1-59259-193-0:017

Download citation

  • DOI: https://doi.org/10.1385/1-59259-193-0:017

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-682-6

  • Online ISBN: 978-1-59259-193-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics