Skip to main content

HSV Amplicon Vectors in Neuronal Apoptosis Studies

  • Protocol
Apoptosis Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 37))

  • 333 Accesses

Abstract

Specific cellular and temporal regulation of gene expression is a goal of many molecular studies. The study of programmed cell death requires cellular specificity, temporal regulation, as well as the interaction of a myriad of gene products. One way to regulate these interactions in an apoptotic cell is by specifically altering gene expression using a DNA transfer system. Several methods exist that are capable of delivering gene constructs into intact animals. DNA can be introduced into cells by direct DNA transfer using liposome-encapsulated DNA or viral vector systems which carry the gene of interest. An ex vivo approach can be implemented whereby cells are manipulated to produce the desired gene product and subsequently transferred to the animal. Transfer can also be accomplished using viral vector systems. In particular, transfer into the central nervous system and neurons is most commonly accomplished using various viral vector systems. Our laboratory and others have been developing herpes simplex virus (HSV) amplicon vectors, which are plasmid-based vectors that carry the gene of interest under the control of a specific promoter. In this chapter, we will review HSV amplicon vectors as a modality for gene transfer in two models of apoptosis, central nervous system (CNS) ischemia and cochlear degeneration. Improved helper-free amplicon methodology will be described, as well as advantages and disadvantages associated with this viral vector system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Federoff, H. J., Geschwind, M. D., Geller, A. I., and Kessler, J. A. (1992) Expression of nerve growth factor in vivo from a defective herpes simplex virus 1 vector prevents effects of axotomy on sympathetic ganglia. Proc. Natl. Acad. Sci. USA 89(5), 1636–1640.

    Article  PubMed  CAS  Google Scholar 

  2. Frenkel, N. (1981) Defective interfering herpesviruses, in The Human Herpes-viruses-An Interdisciplinary Prospective (Nahmias, A., Dowdle, W., and Scchinazy, R., eds.), Elsevier-North Holland, New York, pp.91–120.

    Google Scholar 

  3. Frenkel, N., Spaete, R. R., Vlazny, D. A., Deiss, L. P., and Locker, H. (1982) The herpes simplex virus amplicon-a novel animal-virus cloning vector, in Eucaryotic Viral Vectors (Gluzman, Y., ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 205–209.

    Google Scholar 

  4. Geller, A. I. and Breakefield, X. O. (1988) A defective HSV-1 vector expresses Escherichia coli β-galactosidase in cultured peripheral neurons. Science 241, 1667–1669.

    Article  PubMed  CAS  Google Scholar 

  5. Geller, A. I., Keyomarsi, K., Bryan, J., and Pardee, A. B. (1990) An efficient deletion mutant packaging system for defective herpes simplex virus vectors: potential applications to human gene therapy and neuronal physiology. Proc. Natl. Acad. Sci. USA 87, 8950–8954.

    Article  PubMed  CAS  Google Scholar 

  6. Geschwind, M. D., Hartnick, C. J., Liu, W., Amat, J., Van De Water, T. R., and Federoff, H. J. (1996) Defective HSV-1 vector expressing BDNF in auditory ganglia elicits neurite outgrowth: model for treatment of neuron loss following cochlear degeneration. Hum. Gene Ther. 7 173–182.

    Article  PubMed  CAS  Google Scholar 

  7. Geschwind, M. D., Lu, B., and Federoff, H. J. (1994) Expression of neuro-trophic genes from herpes simplex virus type 1 vectors: modifying neuronal phenotype. Meth. Neurosci. 21, 462–482.

    Google Scholar 

  8. Lawrence, M., Ho, D., Dash, R., and Sapolsky, R. (1995) Herpes simplex virus overexpressing the glucose transporter gene protect against seisure-induced neuron loss. Proc. Natl. Acad. Sci. USA 92, 7247–7251.

    Article  PubMed  CAS  Google Scholar 

  9. Spaete, R. R. and Frenkel, N. (1982) The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30, 305–310.

    Article  Google Scholar 

  10. Spaete, R. R. and Frenkel, N. (1985) The herpes simplex virus amplicon: analyses of cis-acting replication functions. Proc. Natl. Acad. Sci. USA 82, 694–698.

    Article  PubMed  CAS  Google Scholar 

  11. Stow, N. D. and McMonagle, E. (1982) Propagation of foreign DNA sequences linked to a herpes simplex virus origin of replication, in Eucaryotic Viral Vectors (Gluzman, Y., ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 199–204.

    Google Scholar 

  12. Frenkel, N., Locker, H., Batterson, W. Hayward, G. S., and Roizman, B. (1976) Anatomy of herpes simplex virus DNA. VI. Defective DNA originates from the S component. J. Virol. 20(2), 527–531.

    PubMed  CAS  Google Scholar 

  13. Geller, A. I. and Federoff, H. J. (1991) The use of HSV-1 vectors to introduce heterologous genes into neurons: implication for gene therapy, in Human Gene Transfer (Cohen-Haguenauer, O. and Boiron, M., eds.), Colloque INSERM/John Libbey Eurotext, Montrouge, France, pp. 63–73.

    Google Scholar 

  14. Geschwind, M. D., Kessler, J. A., Geller, A. I., and Federoff, H. J. (1994) Transfer of the nerve growth factor gene into cell lines and cultured neurons using a defective herpes simplex virus vector. Transfer of the NGF gene into cells by a HSV-1 vector. Mol. Brain Res. 24, 327–335.

    Article  PubMed  CAS  Google Scholar 

  15. Kaplitt, M. G., Leone, P., Samulski, R. J., et al. (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat. Genet. 8(Oct.), 148–154.

    Article  PubMed  CAS  Google Scholar 

  16. Lu, B. and Federoff, H. J. (1995) Herpes simplex virus type 1 amplicon vectors with glucocorticoid-inducible gene expression. Hum. Gene Ther. 6, 421–430.

    Article  Google Scholar 

  17. Jin, B. K., Belloni, M., Conti, B., et al. (1996) Prolonged in vivo gene expression driven by a tyrosine hydroxylase promoter in a defective herpes simplex virus amplicon vector. Hum. Gene Ther. 7, 2015–2024.

    Article  PubMed  CAS  Google Scholar 

  18. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cyto-chrome c. Cell 86, 147–157.

    Article  PubMed  CAS  Google Scholar 

  19. Brooks, A. I., Muhkerjee, B., Panahian, N., Cory-Slechta, D., and Federoff, H. J. (1997) Nerve growth factor somatic mosaicism produced by herpes virus-directed expression of cre recombinase. Nat. Biotechnol. 15, 57–62.

    Article  PubMed  CAS  Google Scholar 

  20. Halterman, M. W., Miller, C. C., and Federoff, H. J. (1999) Hypoxia-induci-ble factor-1α mediates hypoxia-induced delayed neuronal death that involves p53. J. Neurosci. 19(16), 6818–6824.

    PubMed  CAS  Google Scholar 

  21. During, M. J., Naegele, J. R., O’Malley, K. L., and Geller, A. I. (1994) Long-term behavioral recovery in Parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science 266, 1399–1403.

    Article  PubMed  CAS  Google Scholar 

  22. Harvey, D. M. and Caskey, C. T. (1998) Inducible control of gene expression: prospects for gene therapy. Curr. Opin. Chem. Biol. 2(4), 512–518.

    Article  PubMed  CAS  Google Scholar 

  23. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89 (12), 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  24. Strathdee, C. A., McLeod. M. R., and Hall. J. R. (1999) Efficient control of tetracycline-responsive gene expression from an autoregulated bi-directional expression vector. Gene 229(1-2), 21–29.

    Article  PubMed  CAS  Google Scholar 

  25. Kerr, J. F., Wyllie. A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26(4), 239–257.

    Article  PubMed  CAS  Google Scholar 

  26. Michel, P. P., Lambeng, N., and Ruberg, M. (1999) Neuropharmacologic aspects of apoptosis: significance for neurodegenerative diseases. Clin. Neuro-pharmacol. 22 (3), 137–150.

    CAS  Google Scholar 

  27. Emerich, D. and Bartus, R. (1999) Intracellular events associated with cerebral ischemia, in Stroke Therapy: Basic, Preclinical, and Clinical Directions (Miller, L., ed.), Wiley-Liss, New York, pp. 195–218.

    Google Scholar 

  28. Sapolsky, R. M. and Steinberg, G. K. (1999) Gene therapy using viral vectors for acute neurologic insults. Neurology 53(9), 1922–1931.

    PubMed  CAS  Google Scholar 

  29. Hatterman, M. W. and Federoff, H. J. (1999) Hif-1a and p53 promote hypoxia-induced delayed neuronal death in models of CNS ischemia. Exp. Neurol. 159, 65–72.

    Article  Google Scholar 

  30. Siesjo, B. K. (1981) Cell damage in the brain. J. Cereb. Blood Flow Metab. 1, 155–185.

    Article  PubMed  CAS  Google Scholar 

  31. Koroshetz, W. J. and Moskowitz, M. A. (1996) Emerging treatments for stroke in humans. TiPS 17, 227–233.

    PubMed  CAS  Google Scholar 

  32. Collaco-Moraes, Y., Aspey, B. S., de Belleroche, J. S., and Harrison, M. J. G. (1994) Focal ischemia causes an extensive induction of immediate early genes that are sensitive to MK-801. Stroke 25, 1855–1861.

    Article  PubMed  CAS  Google Scholar 

  33. Gillardon, F., Lenz, C., Waschke, K. F., et al. (1996) Altered expression of Bcl-2, Bcl-X, Bax, and c-Fos colocalizes with DNA fragmentation and ische-mic cell damage following middle cerebral artery occlusion in rats. Mol. Brain Res. 40, 254–260.

    Article  PubMed  CAS  Google Scholar 

  34. Kogure, K. and Kato, H. (1993) Altered gene expression in cerebral ischemia. Stroke 24(12), 2121–2127.

    Article  PubMed  CAS  Google Scholar 

  35. Xiang, H., Kinoshita, Y., Knudson, C. M., Korsmeyer, S. J., Schwartzkroin, P. A., and Morrison, R. S. (1998) Bax involvement in p53-mediated neuronal cell death. J. Neurosci. 18(4), 1363–1373.

    PubMed  CAS  Google Scholar 

  36. Bakhshi, A., Jensen, J. P., Goldman, P., et al. (1985) Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41 (3), 899–906.

    Article  PubMed  CAS  Google Scholar 

  37. Cleary, M. L. and Sklar, J. (1985) Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a break-point-cluster region near a transcriptionally active locus on chromosome 18. Proc. Natl. Acad. Sci. USA 82(21), 7439–7443.

    Article  PubMed  CAS  Google Scholar 

  38. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. D., and Korsmeyer, S. J. (1990) Bcl-2 is an inner mitochondrial membrane protein blocks programmed cell death. Nature 348, 334–336.

    Article  PubMed  CAS  Google Scholar 

  39. Krajewski, S., Tanaka, S., Takayama, S., Schibler, M. J., Fenton, W., and Reed, J. C. (1993) Investigation of the subcellular distribution of the bcl-2oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 53 (19), 4701–4714.

    PubMed  CAS  Google Scholar 

  40. Merry, D. E. and Korsmeyer, S. J. (1997) Bcl-2 gene family in the nervous system. Annu. Rev. Neurosci. 20, 245–267.

    Article  PubMed  CAS  Google Scholar 

  41. Monaghan, P., Robertson, D., Amos, T. A. S., Dyer, M. J. S., Mason, D. Y., and Greaves, M. F. (1992) Ultrastructural localization of bcl-2 protein. J. His-tochem. Cytochem. 40(12), 1819–1825.

    Article  CAS  Google Scholar 

  42. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E., and Croce, C. M. (1985) The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229, 1390–1393.

    Article  PubMed  CAS  Google Scholar 

  43. Reed, J. C. (1997) Double identity for proteins of the Bcl-2 family. Nature 387, 773–776.

    Article  PubMed  CAS  Google Scholar 

  44. Allsopp, T. E., Wyatt, S., Paterson, H. F., and Davies, A. M. (1993) The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 73, 295–307.

    Article  PubMed  CAS  Google Scholar 

  45. Asahi, M., Hoshimaru, M., Uemura, Y., et al. (1997) Expression of inter-leukin-1β converting enzyme gene family and bcl-2 gene family in the rat brain following permanent occlusion of the middle cerebral artery. J. Cereb. Blood Flow Metabol. 17, 11–18.

    CAS  Google Scholar 

  46. Behl, C., Hovey, L. III, Krajewski, S., Schubert, D., and Reed, J. C. (1993) Bcl-2 prevents killing of neuronal cells by glutamate but not by amyloid beta protein. Biochem. Biophys. Res. Commun. 197(2), 949–956.

    Article  PubMed  CAS  Google Scholar 

  47. Chen, J., Graham, S. H., Nakayama, M., et al. (1997) Apoptosis repressor genes Bcl-2 and Bcl-x-long are expressed in the rat brain following global ischemia. J. Cereb. Blood Flow Metabol. 17, 2–10.

    CAS  Google Scholar 

  48. Honkaniemi, J., Massa, S. M., Breckinridge, M., and Sharp, F. R. (1996) Global ischemia induces apoptosis-associated genes in hippocampus. Mol. Brain Res. 42, 79–88.

    Article  PubMed  CAS  Google Scholar 

  49. Kane, D. J., Sarafian, T. A., Anton, R., et al. (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262, 1274–1277.

    Article  PubMed  CAS  Google Scholar 

  50. Linnik, M. D., Zahos, P., Geschwind, M. S., and Federoff, H. J. (1995) Expression of bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke 26, 1670–1675.

    Article  PubMed  CAS  Google Scholar 

  51. Martinou, J.-C., Dubois-Dauphin, M., Staple, J. K., et al. (1994) Overexpres-sion of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13, 1017–1030.

    Article  PubMed  CAS  Google Scholar 

  52. Zhong, L.-T., Sarafian, T., Kane, D. J., et al. (1993) Bcl-2 inhibits death of central neural cells induced by multiple agents. Proc. Natl. Acad. Sci. USA 90, 4533–4537.

    Article  PubMed  CAS  Google Scholar 

  53. McDonnell, T. J., Deane, N., Platt, F. M., et al. (1989) Bcl-2-immunoglobu-lin transgenic mice demonstrate extended B cell survival and follicular lym-phoproliferation. Cell 57, 79–88

    Google Scholar 

  54. Vaux, D. L., Weissman, I. L., and Kim, S. K. (1992) Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258, 1955–1957.

    CAS  Google Scholar 

  55. Eizenberg, O., Faber-Elman, A., Gottlieb, E., Oren, M., Rotter, V., and Schwartz, M. (1996) p53 plays a regulatory role in differentiation and apop-tosis of central nervous system-associated cells. Mol. Cell Biol. 16(9), 5178–5185.

    PubMed  CAS  Google Scholar 

  56. Jordan, J., Galindo, M. F., Prehn, J. H., et al. (1997) p53 expression induces apoptosis in hippocampal pyramidal neuron cultures. J. Neurosci. 17(4), 1397–1405.

    PubMed  CAS  Google Scholar 

  57. Shinoura, N., Satou, R., Yoshida, Y., Asai, A., Kirino, T., and Hamada, H. (2000) Adenovirus-mediated transfer of Bcl-X(L) protects neuronal cells from Bax-induced apoptosis. Exp. Cell Res. 254(2), 221–231.

    Article  PubMed  CAS  Google Scholar 

  58. Slack, R. S., Belliveau, D. J., Rosenberg, M., et al. (1996) Adenovirus-mediated gene transfer of the tumor suppressor, p53, induces apoptosis in post-mitotic neurons. J. Cell Biol. 135(4), 1085–1096.

    Article  PubMed  CAS  Google Scholar 

  59. Antonawich, F. J., Federoff, H. J., and Davis, J. N. (1999) BCL-2 transduc-tion, using a herpes simplex virus amplicon, protects hippocampal neurons from transient global ischemia. Exp. Neurol. 156(1), 130–137.

    Article  PubMed  CAS  Google Scholar 

  60. Tsai, T. H., Chen, S. L., Chiang, Y. H., et al. (2000) Recombinant adeno-associated virus vector expressing glial cell line-derived neurotrophic factor reduces ischemia-induced damage. Exp. Neurol. 166(2), 266–275.

    Article  PubMed  CAS  Google Scholar 

  61. Goldberg, M. A., Dunning, S. P., and Bunn, H. F. (1988) Regulation of the ery-thropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242 (4884), 1412–1415.

    Article  PubMed  CAS  Google Scholar 

  62. Srinivas, V., Zhu, X., Salceda, S., Nakamura, R., and Caro, J. (1998) Hypoxia-inducible factor 1alpha (HIF-1alpha) is a non-heme iron protein. Implications for oxygen sensing. J. Biol. Chem. 273(29), 18,019–18,022.

    Article  PubMed  CAS  Google Scholar 

  63. Blanchard, K. L., Acquaviva, A. M., Galson, D. L., and Bunn, H. F. (1992) Hypoxic induction of the human erythropoietin gene: cooperation between the promoter and enhancer, each of which contains steroid receptor response elements. Mol. Cell Biol. 12(12), 5373–5385.

    PubMed  CAS  Google Scholar 

  64. Guillemin, K. and Krasnow, M. A. (1997) The hypoxic response: huffing and HIFing. Cell 89(1), 9–12.

    Article  PubMed  CAS  Google Scholar 

  65. Halterman, M. and Federoff, H. (1999) HIF-1α cooperates with p53 to promote hypoxia induced neuronal death, in Keystone Symposia-Apoptosis and Programmed Cell Death, Keystone Symposia, Breckenridge, CO, p. 53.

    Google Scholar 

  66. Van de Water, T. R., Staecker, H., Halterman, M. W., and Federoff, H. J. (1999) Gene therapy in the inner ear. Mechanisms and clinical implications. Ann. N.Y. Acad. Sci. 884, 345–360.

    Article  PubMed  Google Scholar 

  67. Ard, M. D., Morest, D. K., and Hauger, S. H. (1985) Trophic interactions between the cochleovestibular ganglion of the chick embryo and its synap-tic targets in culture. Neuroscience 16(1), 151–170.

    Article  PubMed  CAS  Google Scholar 

  68. Koitchev, K., Aran, J. M., Ivanov, E., and Cazals, Y. (1986) Progressive degeneration in the cochlear nucleus after chemical destruction of the cochlea. Acta Otolaryngol. 102(1-2), 31–39.

    Article  PubMed  CAS  Google Scholar 

  69. Pfingst, B. E. and Sutton, D. (1983) Relation of cochlear implant function to histopathology in monkeys. Ann. N.Y. Acad. Sci. 405, 224–239.

    Article  PubMed  CAS  Google Scholar 

  70. Spoendlin, H. (1971) Primary structural changes in the organ of Corti after acoustic overstimulation. Acta Otolaryngol. 71(2), 166–176.

    Article  PubMed  CAS  Google Scholar 

  71. Webster, M. and Webster. D. B. (1981) Spiral ganglion neuron loss following organ of Corti loss: a quantitative study. Brain Res. 212(1), 17–30.

    Article  PubMed  CAS  Google Scholar 

  72. Ylikoski, J., Wersall, J., and Bjorkroth, B. (1974) Degeneration of neural elements in the cochlea of the guinea-pig after damage to the organ of corti by ototoxic antibiotics. Acta Otolaryngol. Suppl. 326, 23–41.

    Article  PubMed  CAS  Google Scholar 

  73. Zhou, X. N. and Van de Water, T. R. (1987) The effect of target tissues on survival and differentiation of mammalian statoacoustic ganglion neurons in organ culture. Acta Otolaryngol. 104(1-2), 90–98.

    Article  PubMed  CAS  Google Scholar 

  74. Lefebvre, P. P., Van de Water, T. R., Staecker, H., et al. (1992) Nerve growth factor stimulates neurite regeneration but not survival of adult auditory neurons in vitro. Acta Otolaryngol. 112(2), 288–293.

    PubMed  CAS  Google Scholar 

  75. Ylikoski, J., Pirvola, U., and Happola, O. (1993) Characterization of the vestibular and spiral ganglion cell somata of the rat by distribution of neu-rofilament proteins. Acta Otolaryngol. Suppl. 503, 121–126.

    Article  PubMed  CAS  Google Scholar 

  76. Ernfors, P., Lee, K. F., and Jaenisch, R. (1994) Target derived and putative local actions of neurotrophins in the peripheral nervous system. Prog. Brain Res. 103, 43–54.

    Article  PubMed  CAS  Google Scholar 

  77. Schecterson, L. C. and Bothwell, M. (1994) Neurotrophin and neurotro-phin receptor mRNA expression in developing inner ear. Hear. Res. 73 (1), 92–100.

    Article  PubMed  CAS  Google Scholar 

  78. Chen, X., Frisina, R. D., Bowers, W. J., Frisina, D. R., and Federoff, H. J. (2001) Hsv amplicon-mediated neurotrophin-3 expression protects murine spiral ganglion neurons from cisplatin-induced damage. Mol. Ther. 3(6), 958–963.

    Article  PubMed  CAS  Google Scholar 

  79. Hartshorn, D. O., Miller, J. M., and Altschuler, R. A. (1991) Protective effect of electrical stimulation in the deafened guinea pig cochlea. Otolaryngol. Head Neck Surg. 104 (3), 311–319.

    PubMed  CAS  Google Scholar 

  80. Michelson, R. P. and Schindler, R. A. (1983) Surgical approach for insertion of multichannel electrodes into the scala tympani. Ann. N.Y. Acad. Sci. 405, 343–347.

    Article  PubMed  CAS  Google Scholar 

  81. Staecker, H., Gabaizadeh, R., Federoff, H., and Van De Water, T. R. (1998) Brain-derived neurotrophic factor gene therapy prevents spiral ganglion degeneration after hair cell loss. Otolaryngol. Head Neck Surg. 119 (1), 7–13.

    Article  PubMed  CAS  Google Scholar 

  82. Carenza, L., Villani, C., Framarino dei Malatesta, M. L., et al. (1986) Peripheral neuropathy and ototoxicity of dichlorodiamineplatinum: instrumental evaluation. Preliminary results. Gynecol. Oncol. 25(2), 244–249.

    Article  PubMed  CAS  Google Scholar 

  83. Fleischman, R. W., Stadnicki, S. W., Ethier, M. F., and Schaeppi, U. (1975) Ototoxicity of cis-dichlorodiammine platinum (II) in the guinea pig. Toxicol. Appl. Pharmacol. 33(2), 320–332.

    Article  PubMed  CAS  Google Scholar 

  84. Nakai, Y., Konishi, K., Chang, K. C., et al. (1982) Ototoxicity of the anti-cancer drug cisplatin. An experimental study. Acta Otolaryngol. 93(3-4), 227–232.

    Article  PubMed  CAS  Google Scholar 

  85. Rybak, L. P. (1981) Cis-platinum associated hearing loss. J. Laryngol. Otol. 95(7), 745–747.

    Article  PubMed  CAS  Google Scholar 

  86. Cavaletti, G. and Tredici, G. (1996) Evaluation of cisplatin neuroprotection by NT-3. Ann. Neurol. 39(6), 827.

    Article  PubMed  CAS  Google Scholar 

  87. Zheng, J. L., Stewart, R. R., and Gao, W. Q. (1995) Neurotrophin-4/5 enhances survival of cultured spiral ganglion neurons and protects them from cisplatin neurotoxicity. J. Neurosci. 15 (7 Pt 2), 5079–5087.

    PubMed  CAS  Google Scholar 

  88. Han, J. J., Mhatre, A. N., Wareing, M., et al. (1999) Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector. Hum. Gene Ther. 10 (11), 1867–1873.

    Article  PubMed  CAS  Google Scholar 

  89. Stover, T., Yagi, M., and Raphael, Y. (1999) Cochlear gene transfer: round window versus cochleostomy inoculation. Hear. Res. 136(1-2), 124–130.

    Article  PubMed  CAS  Google Scholar 

  90. Bowers, W. J., Howard, D. F., Brooks, A. I., Halterman, M. W., and Federoff, H. J. (2001) Expression of vhs and VP16 during HSV-1 helper virus-free amplicon packaging enhances titers. Gene Ther. 8(2), 111–120.

    Article  PubMed  CAS  Google Scholar 

  91. Bowers, W. J., Howard, D. F., and Federoff, H. J. (2000) Discordance between expression and genome transfer titering of HSV amplicon vectors: recommendation for standardized enumeration. Mol. Ther. 1(3), 294–299.

    Article  PubMed  CAS  Google Scholar 

  92. Stavropoulos, T. A. and Strathdee, C. A. (1998) An enhanced packaging system for helper-dependent herpes simplex virus vectors. J. Virol. 72(9), 7137–7143.

    PubMed  CAS  Google Scholar 

  93. Sena-Esteves, M., Saeki, Y., Fraefel, C., and Breakefield, X. O. (2000) HSV-1 amplicon vectors-simplicity and versatility. Mol. Ther. 2(1), 9–15.

    Article  PubMed  CAS  Google Scholar 

  94. Saeki, Y., Fraefel, C., Ichikawa, T., Breakefield, X. O., and Chiocca, E. A. (2001) Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol. Ther. 3(4), 591–601.

    Article  PubMed  CAS  Google Scholar 

  95. Brooks, A. I., Cory-Slechta, D. A., Bowers, W. J., Murg, S. L., and Federoff, H. J. (2000) Enhanced learning in mice parallels vector-mediated nerve growth factor expression in hippocampus. Hum. Gene Ther. 11(17), 2341–2352.

    Article  PubMed  CAS  Google Scholar 

  96. Brooks, A. I., Cory-Slechta, D. A., and Federoff, H. J. (2000) Gene-experience interaction alters the cholinergic septohippocampal pathway of mice. Proc. Natl. Acad. Sci. USA 97 (24), 13,378–13,383.

    Article  PubMed  CAS  Google Scholar 

  97. Brooks, A. I., Halterman, M. W., Chadwick, C.A., et al. (1998) Reproducible and efficient murine CNS gene delivery using a microprocessor-controlled injector. J. Neurosci. Meth. 80(2), 137–147.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Maguire-Zeiss, K.A., Bowers, W.J., Federoff, H.J. (2002). HSV Amplicon Vectors in Neuronal Apoptosis Studies. In: LeBlanc, A.C. (eds) Apoptosis Techniques and Protocols. Neuromethods, vol 37. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-188-4:061

Download citation

  • DOI: https://doi.org/10.1385/1-59259-188-4:061

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-1-58829-012-0

  • Online ISBN: 978-1-59259-188-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics