Skip to main content

Bacterial Colonization and Infection in the CF Lung

  • Protocol
Cystic Fibrosis Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 70))

  • 896 Accesses

Abstract

Progressive obstructive pulmonary disease accounts for the majority of morbidity and mortality in cystic fibrosis (CF) (1). Chronic bacterial bronchopul-monary colonization and infection plays a major role in this progression. While the lungs of persons with CF are normal in utero, many infants become colonized with a number of bacterial organisms including Staphylococcus aureus and Haemophilus influenzae shortly after birth (2-6). The role of these organisms in the development of lung disease remains unclear. In time, Pseudomo-nas aeruginosa becomes the predominant bacterial pathogen in older children and is strongly associated with progressive pulmonary decline (7-9). Most CF patients are initially infected with classical, smooth strains of P. aeruginosa. During the course of the disease, these bacteria change to a mucoid phenotype with a rough polysaccharide exterior (10). This mucoid exopolysaccharide prevents both phagocytes and antibiotics from being able to penetrate and kill the bacteria and therefore plays a major role in promoting the persistent infection and inflammation that ultimately destroys the lung. Burkholderia cepacia, now an increasingly important pathogen, is associated with more advanced lung disease and in some cases is correlated with rapid clinical deterioration (10,12,13). Highly antibiotic-resistant organisms such as Achromobacter xylosoxidans and Stenotrophomonas maltophilia are also frequently recovered from patients with more advanced disease (14). The incidence of colonization and infection with these and other pathogens is reported annually by the national Cystic Fibrosis Foundation Patient Registry (15) and elsewhere (14). It is clear that the presence of these bacterial organisms incites and propagates a chronic inflammatory response that damages the airways and impairs local host-defense mechanisms, resulting in widespread bronchiectasis and respiratory failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welsh, M. J., Ramsey, B. W., Accurso, F. J., and Cutting, G. R. (2001) Cystic fibrosis, in The Metabolic and Molecular Bases of Inherited Disease. (Scriver, C. R., Beaudet, A. L., Valle, D., and Sly, W. S., eds.), McGraw Hill, New York, pp. 521–588.

    Google Scholar 

  2. Balough, K., McCubbin, M., Weinberger, M., Smits, W., Ahrens, R., and Fick, R. 1995._The relationship between infection and inflammation in the early stages of lung disease from cystic fibrosis. Pediatr. Pulmonol. 20, 63–70.

    Google Scholar 

  3. Khan, T. Z., Wagener, J. S., Bost, T., Martinez, J., Accurso, F. J., and Riches, D. W. (1995) Early pulmonary inflammation in infants with cystic fibrosis [see comments]. Am. J. Respir. Crit. Care Med. 151, 1075–1082.

    CAS  PubMed  Google Scholar 

  4. Armstrong, D. S., Grimwood, K., Carzino, R., Carlin, J. B., Olinsky, A. and Phelan, P. D. (1995) Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. BMJ 310, 1571,1572.

    Google Scholar 

  5. Armstrong, D. S., Grimwood, K., Carlin, J. B., Carzino, R., Gutierrez, J. P., Hull, J., et al. (1997) Lower airway inflammation in infants and young children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 156, 1197–1204.

    CAS  PubMed  Google Scholar 

  6. Abman, S. H., Ogle, J. W., Harbeck, R. J., Butler-Simon, N., Hammond, K. B., and Accurso, F. J. 1991. Early bacteriologic, immunologic, and clinical courses of young infants with cystic fibrosis identified by neonatal screening. J. Pediatr. 119, 211–217.

    Google Scholar 

  7. Kerem, E., Corey, M., Gold, R., and Levison, H. (1990) Pulmonary function and clinical course in patients with cystic fibrosis after pulmonary colonization with Pseudomonas aeruginosa. 0J Pediatr. 116, 714–719

    Article  CAS  Google Scholar 

  8. Nixon, G. M., Armstrong, D. S., Carzino, R., Carlin, J. B., Olinsky, A., Robertson, C. F., and Grimwood, K. (2001) Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr. 138, 699–704.

    Article  CAS  PubMed  Google Scholar 

  9. Kosorok, M. R., Zeng, L., West, S. E., Rock, M. J., Splaingard, M. L., Laxova, A., Green, C. G., Collins, J., and Farrell, P. M. (2001) Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatr Pulmonol. 32, 277–287.

    Article  CAS  PubMed  Google Scholar 

  10. Gilligan, P. H. (1991) Microbiology of airway disease in patients with cystic fibrosis. Clin. Microbiol. Rev. 4, 35–51. 444

    CAS  PubMed  Google Scholar 

  11. Tosi, M. F., Zakem-Cloud, H., Demko, C. A., Schreiber, J. R., Stern, R. C., Konstan, M. W., and Berger, M. (1995) Cross-sectional and longitudinal studies of naturally occurring antibodies to Pseudomonas aeruginosa in cystic fibrosis indicate absence of antibody-mediated protection and decline in opsonic quality after infection [see comments]. J. Infect. Dis. 172, 453–461.

    CAS  PubMed  Google Scholar 

  12. Tablan, O. C., Chorba, T. L., Schidlow, D. V., White, J. W., Hardy, K. A., Gilligan, P. H., et al. (1985) Pseudomonas cepacia colonization in patients with cystic fibrosis: risk factors and clinical outcome. J. Pediatr. 107, 382–387.

    Article  CAS  PubMed  Google Scholar 

  13. Thomassen, M. J., Demko, C. A., Klinger, J. D., and Stern, R. C. Pseudomonas cepacia colonization among patients with cystic fibrosis. A new opportunist. Am. Rev. Respir. Dis. 131(5), 791–796.

    Google Scholar 

  14. Burns, J. L., Emerson, J., Stapp, J. R., Yim, D. L., Krzewinski, J., Louden, L., et al. (1998) Microbiology of sputum from patients at cystic fibrosis centers in the United States. Clin. Infect. Dis. 27, 158–163.

    Google Scholar 

  15. Cystic Fibrosis Foundation 1999 Registry.

    Google Scholar 

  16. FitzSimmons, S. C. (1993) The changing epidemiology of cystic fibrosis [see comments]. J. Pediatr. 122, 1–9.

    CAS  PubMed  Google Scholar 

  17. Smith, A. L., Redding, G., Doershuk, C., Goldmann, D., Gore, E., Hilman, B., et al. (1988) Sputum changes associated with therapy for endobronchial exacerbation in cystic fibrosis. J. Pediatr. 112, 547–554.

    Article  CAS  PubMed  Google Scholar 

  18. Wiesemann, H. G., Steinkamp, G., Ratjen, F., Bauernfeind, A., Przyklenk, B., Doring, G., et al. (1998) Placebo-controlled, double-blind, randomized study of aerosolized tobramycin for early treatment of Pseudomonas aeruginosa colonization in cystic fibrosis. Pediatr. Pulmonol. 25, 88–92.

    Article  CAS  PubMed  Google Scholar 

  19. Frederiksen, B., Koch, C. and Hoiby, N. (1997) Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis [see comments]. Pediatr. Pulmonol. 23, 330–335.

    Article  CAS  PubMed  Google Scholar 

  20. Ramsey, B. W., Wentz, K. R., Smith, A. L., Richardson, M., Williams-Warren, J., Hedges, D. L., et al. (1991) Predictive value of oropharyngeal cultures for identifying lower airway bacteria in cystic fibrosis patients. Am. Rev. Respir. Dis. 144, 331–337.

    CAS  PubMed  Google Scholar 

  21. Armstrong, D. S., Grimwood, K., Carlin, J. B., Carzino, R., Olinsky, A. and Phelan, P. D. 1996. Bronchoalveolar lavage or oropharyngeal cultures to identify lower respiratory pathogens in infants with cystic fibrosis [see comments]. Pediatr. Pulmonol. 21, 267–275.

    Google Scholar 

  22. Thomassen, M. J., Klinger, J. D., Badger, S. J., van Heeckeren, D. W., and Stern, R. C. (1984) Cultures of thoracotomy specimens confirm usefulness of sputum cultures in cystic fibrosis. J. Pediatr. 104, 352–356.

    Article  CAS  PubMed  Google Scholar 

  23. Gilljam, H., Malmborg, A. S. and Strandvik, B. (1986) Conformity of bacterial growth in sputum and contamination free endobronchial samples in patients with cystic fibrosis. Thorax 41, 641–646.

    Article  CAS  PubMed  Google Scholar 

  24. Hargreave, F. E., Pizzichini, M. M. M. and Pizzichini, E. (1997) Assessment of airway inflammation, in Asthma. (Barnes, P. J., Grunstein, M. M., Leff, A. R., and Woolcock, A. J., eds.), Lippincott-Raven, Philadelphia, pp. 1433-1450. 445 25. Khajotia, R. R., Mohn, A., Pokieser, L., Schalleschak, J., and Vetter, N. (1991) Induced sputum and cytological diagnosis of lung cancer. Lancet 338, 976,977.

    Google Scholar 

  25. Khajotia, R.R., Mohn, A., Pokieser, L., Schalleschak, J., and Vetter, N. (1991) Induced sputum and cytological diagnosis of lung cancer. Lancet 338, 976,977.

    Article  CAS  PubMed  Google Scholar 

  26. Metersky, M. L., Aslenzadeh, J. and Stelmach, P. (1998) A comparison of induced and expectorated sputum for the diagnosis of Pneumocystis carinii pneumonia. Chest 113, 1555–1559.

    Article  CAS  PubMed  Google Scholar 

  27. Fishman, J. A., Roth, R. S., Zanzot, E., Enos, E. J., and Ferraro, M. J. (1994) Use of induced sputum specimens for microbiologic diagnosis of infections due to organisms other than Pneumocystis carinii. J. Clin. Microbiol. 32, 131–134.

    CAS  PubMed  Google Scholar 

  28. Pin, I., Gibson, P. G., Kolendowicz, R., Girgis-Gabardo, A., Denburg, J. A., Hargreave, F. E., and Dolovich, J. (1992) Use of induced sputum cell counts to investigate airway inflammation in asthma. Thorax 47, 25–29.

    Article  CAS  PubMed  Google Scholar 

  29. Fahy, J. V., Liu, J., Wong, H., and Boushey, H. A. (1993) Cellular and biochemical analysis of induced sputum from asthmatic and from healthy subjects. Am. Rev. Respir. Dis. 147, 1126–1131.

    CAS  PubMed  Google Scholar 

  30. Spanevello, A., Migliori, G. B., Sharara, A., Ballardini, L., Bridge, P., Pisati, P., et al. (1997) Induced sputum to assess airway inflammation: a study of reproduc-ibility. Clin. Exp. Allergy 27, 1138–1144.

    Article  CAS  PubMed  Google Scholar 

  31. Pavord, I. D., Pizzichini, M. M., Pizzichini, E., and Hargreave, F. E. (1997) The use of induced sputum to investigate airway inflammation. Thorax 52, 498–501.

    Article  CAS  PubMed  Google Scholar 

  32. Keatings, V. M., Evans, D. J., O’Connor, B. J., and Barnes, P. J. (1997) Cellular profiles in asthmatic airways: a comparison of induced sputum, bronchial washings, and bronchoalveolar lavage fluid. Thorax 52, 372–374.

    Article  CAS  PubMed  Google Scholar 

  33. Oh, J. W., Lee, H. B., Kim, C. R., Yum, M. K., Koh, Y. J., et al. (1999) Analysis of induced sputum to examine the effects of inhaled corticosteroid on airway inflammation in children with asthma. Ann. Allergy Asthma Immunol. 82, 491–496.

    Article  CAS  PubMed  Google Scholar 

  34. Keatings, V. M., Collins, P. D., Scott, D. M., and Barnes, P. J. (1996) Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am. J. Respir. Crit. Care Med. 153, 530–534.

    CAS  PubMed  Google Scholar 

  35. De Boeck, K., Alifier, M., and Vandeputte, S. (2000) Sputum induction in young cystic fibrosis patients. Eur. Respir. J. 16, 91–94.

    Article  PubMed  Google Scholar 

  36. Henry, R. L., Gibson, P. G., Carty, K., Cai, Y., and Francis, J. L. (1998) Airway inflammation after treatment with aerosolized deoxyribonuclease in cystic fibrosis. Pediatr. Pulmonol. 26, 97–100.

    Article  CAS  PubMed  Google Scholar 

  37. Henig, N. R., Tonelli, M. R., Pier, M. V., Burns, J. L., and Aitken, M. L. (2001) Sputum induction as a research tool for sampling the airways of subjects with cystic fibrosis. Thorax 56, 306–311.

    Article  CAS  PubMed  Google Scholar 

  38. LiPuma, J. J., Dulaney, B. J., McMenamin, J. D., Whitby, P. W., Stull, T. L., Coenye, T., et al. (1999) Development of rRNA-based PCR assays for identification of Burkholderia cepacia complex isolates recovered from cystic fibrosis patients. J. Clin. Microbiol. 37, 3167–3170.

    CAS  PubMed  Google Scholar 

  39. van Belkum, A., Renders, N. H., Smith, S., Overbeek, S. E., and Verbrugh, H. A. (2000) Comparison of conventional and molecular methods for the detection of bacterial pathogens in sputum samples from cystic fibrosis patients. FEMS Immunol. Med. Microbiol. 27, 51-57. 446 40. Wong, H. H. and Fahy, J. V. (1997) Safety of one method of sputum induction in asthmatic subjects. FEMS Immunol. Med. Microbiol. 27, 51–57.

    Article  PubMed  Google Scholar 

  40. van Belkum, A., Renders, N. H., Smith, S., Overbeek, S. E., and Verbrugh, H. A. (2000) Comparison of conventional and molecular methods for the detection of bacterial pathogens in sputum samples from cystic fibrosis patients. FEMS Immunol. Med. Microbiol. 27, 51-57. 446 40. Wong, H. H. and Fahy, J. V. (1997) Safety of one method of sputum induction in asthmatic subjects. Am. J. Respir. Crit. Care Med. 156, 299–303.

    CAS  PubMed  Google Scholar 

  41. Schoeffel, R. E., Anderson, S. D., and Altounyan, R. E. (1981) Bronchial hyper-reactivity in response to inhalation of ultrasonically nebulised solutions of distilled water and saline. Br. Med. J. (Clin. Res. Ed.) 283, 1285–1287.

    Article  CAS  Google Scholar 

  42. Hoppe, J. E., Holzwarth, I., and Stern, M. (1997) Postal transport of sputa from cystic fibrosis patients does not decrease the microbiological yield. Zentralbl Bakteriol 286, 468–471.

    CAS  PubMed  Google Scholar 

  43. Henry, D. A., Campbell, M. E., LiPuma, J. J., and Speert, D. P. (1997) Identification of Burkholderia cepacia isolates from patients with cystic fibrosis and use of a simple new selective medium. J. Clin. Microbiol. 35, 614–619.

    CAS  PubMed  Google Scholar 

  44. Wong, K., Roberts, M. C., Owens, L., Fife, M., and Smith, A. L. (1984) Selective media for the quantitation of bacteria in cystic fibrosis sputum. J. Med. Microbiol. 17, 113–119.

    Article  CAS  PubMed  Google Scholar 

  45. Doern, G. V. and Brogden-Torres, B. (1992) Optimum use of selective plated media in primary processing of respiratory tract specimens from patients with cystic fibrosis. J. Clin. Microbiol. 30, 2740–2742.

    CAS  PubMed  Google Scholar 

  46. Welch, D. F., Muszynski, M. J., Pai, C. H., Marcon, M. J., Hribar, M. M., Gilligan, P. H., et al. (1987) Selective and differential medium for recovery of Pseudomo-nas cepacia from the respiratory tracts of patients with cystic fibrosis. J. Clin. Microbiol. 25, 1730–1734.

    CAS  PubMed  Google Scholar 

  47. Lethem, M. I., James, S. L., and Marriott, C. (1990) The role of mucous glycopro-teins in the rheologic properties of cystic fibrosis sputum. Am. Rev. Respir. Dis. 142, 1053–1058.

    CAS  PubMed  Google Scholar 

  48. Picot, R., Das, I., and Reid, L. (1978) Pus, deoxyribonucleic acid, and sputum viscosity. Thorax 33, 235–242

    Article  CAS  PubMed  Google Scholar 

  49. May, J. R., Herrick, N. C., and Thompson, D. (1972) Bacterial infection in cystic fibrosis. Arch. Dis. Child 47, 908–913.

    Article  CAS  PubMed  Google Scholar 

  50. Hammerschlag, M. R., Harding, L., Macone,A., Smith, A. L., and Goldmann, D. A. (1980) Bacteriology of sputum in cystic fibrosis: evaluation of dithiothreitol as a mucolytic agent. J. Clin. Pathol. 11, 552–557.

    CAS  Google Scholar 

  51. Pye, A., Stockley, R. A., and Hill, S. L. (1995) Simple method for quantifying viable bacterial numbers in sputum. J. Clin. Pathol. 48, 719–724.

    Article  CAS  PubMed  Google Scholar 

  52. Cai, Y., Carty, K., Gibson, P., and Henry, R. (1996) Comparison of sputum processing techniques in cystic fibrosis. Pediatr. Pulmonol. 22, 402–407.

    Google Scholar 

  53. Saiman, L., Mehar, F., Niu, W. W., Neu, H. C., Shaw, K. J., Miller, G., and Prince, A. (1996)Antibiotic susceptibility of multiply resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis, including candidates for transplantation. Clin. Infect. Dis. 23, 532–537.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Sagel, S.D., Dowell, E.B., Accurso, F.J. (2002). Bacterial Colonization and Infection in the CF Lung. In: Skach, W.R. (eds) Cystic Fibrosis Methods and Protocols. Methods in Molecular Medicine™, vol 70. Humana Press. https://doi.org/10.1385/1-59259-187-6:433

Download citation

  • DOI: https://doi.org/10.1385/1-59259-187-6:433

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-897-4

  • Online ISBN: 978-1-59259-187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics