Skip to main content

Immunolocalization of CFTR in Intact Tissue and Cultured Cells

  • Protocol
Book cover Cystic Fibrosis Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 70))

Abstract

Cloning of the cystic fibrosis (CF) gene provided, for the first time, the structural information needed to more precisely define the CF defect (1-3). This genetic information was used to develop powerful molecular and antibody reagents that helped define cystic fibrosis transmembrane conductance regulator (CFTR) structure-function relationships and characterize CFTR expression throughout the body. This chapter focuses on how genetic information can be used to develop antipeptide antibodies and how these antibodies can be used to immunolocalize proteins in intact and cultured cells. By identifying which cells expressed CFTR, and correlating that information with existing knowledge of the physiology of those cells, the role of CFTR in normal cell function and the pathophysiology of CF was elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quinton, P. M. (1990) Cystic fibrosis: a disease in electrolyte transport. FASEB J. 4, 2709–2717.

    CAS  PubMed  Google Scholar 

  2. Welsh, M. J. (1990) Abnormal regulation of ion channels in cystic fibrosis epithe-lia. FASEB J. 4, 2718–2725.

    CAS  PubMed  Google Scholar 

  3. Riordan, J. R., Rommens, J. M., Kerem, B., et al (1989) Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245, 1066-1073.

    Google Scholar 

  4. Coons, A. H., Creech, H. J., and Jones, R. N. (1941) Immunological properties of an antibody containing a fluorescent group. Proc. Soc. Exp. Biol. Med. 47, 200.

    CAS  Google Scholar 

  5. Chesselet, M.-F. (ed.) (1990) In Situ Hybridization Histochemistry. CRC Press, Boca Raton, FL.

    Google Scholar 

  6. Cohn, J. A., Melhus, O., Page, L. J., Dittrich, K., and Vigna, S. (1991) CFTR: Development of high-affinity antibodies and localization in sweat gland. Biochem. Biophys. Res. Comm. 181, 36-43. 215 7. Marino, C. R., Matovcik, L. M., Gorelick, F. S., and Cohn, J. A. (1991) Localization of the cystic fibrosis transmembrane conductance regulator in pancreas. J. Clin. Invest. 88, 712–716.

    Article  PubMed  Google Scholar 

  7. Czernik, A. J., Girault, J. A., Nairn, A. C., et al (1991) Production of phosphory-lation state-specific antibodies. Meth. Enzymol. 201, 264–283.

    Article  CAS  PubMed  Google Scholar 

  8. Taylor, C. R. and Cote, R. J. (ed.) (1994) Immunomicroscopy: A Diagnostic Tool for the Surgical Pathologist, 2nd ed., W. B. Saunders, Philadelphia, PA.

    Google Scholar 

  9. Claas, A., Sommer, M., de Jonge, H. R., Kalin, N., and Tummler, B. (2000) Applicability of different antibodies for immunohistochemical localization of CFTR in sweat glands from healthy controls and from patients with cystic fibrosis. J. Histochem. Cytochem. 48, 831–837.

    Google Scholar 

  10. McLean, I. W. and Nakane, P. K. (1974) Periodate-lysine-parafromaldehyde fixative: a new fixation for immunoelectron microscopy. J. Histochem. Cytochem. 22, 1077–1083.

    CAS  PubMed  Google Scholar 

  11. Griffiths, G. (ed.) (1993) Fine Structure Immuno cy to chemistry. Springer Verlag, Heidelberg, Germany.

    Google Scholar 

  12. Cuello, A. C. (ed.) (1993) Immunohistochemistry II. John Wiley and Sons, West Sussex, UK.

    Google Scholar 

  13. Marino, C. R., Jeanes, V., Boron, W. F., and Schmitt, B. M. (1999) Expression and distribution of the Na+-HCO3∼ cotransporter in human pancreas. Am. J. Physiol. 277, G487–G494.

    CAS  PubMed  Google Scholar 

  14. Prince, L. S., Tousson, A., and Marchase, R. B. (1993) Cell surface labeling of CFTR in T84 cells. Am. J. Physiol. 264, C491–C498.

    CAS  PubMed  Google Scholar 

  15. Tousson, A., Fuller, C. M., and Benos, D. J. (1996) Apical recruitment of CFTR in T-84 cells is dependent on cAMP and micro tubules but not Ca2+or microfila-ments. J. Cell Sci. 109, 1325–1334.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Marino, C.R. (2002). Immunolocalization of CFTR in Intact Tissue and Cultured Cells. In: Skach, W.R. (eds) Cystic Fibrosis Methods and Protocols. Methods in Molecular Medicine™, vol 70. Humana Press. https://doi.org/10.1385/1-59259-187-6:199

Download citation

  • DOI: https://doi.org/10.1385/1-59259-187-6:199

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-897-4

  • Online ISBN: 978-1-59259-187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics