Skip to main content

Fluorescent Indicator Methods to Assay Functional CFTR Expression in Cells

  • Protocol
Cystic Fibrosis Methods and Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 70))

  • 1133 Accesses

Abstract

Halide-sensitive fluorescent indicators have been useful in cystic fibrosis (CF) research in assaying functional cystic fibrosis transmembrane conductance regulator (CFTR) expression in cells. Some applications (for review, see refs. 1 and 2) have included measurements in native airway cells (3), demonstration that CFTR is a chloride channel (4,5), functional analysis of mutant CFTRs (6-8), and analysis of the efficacy of CFTR gene replacement in human gene therapy trials (9-11). A promising new application of halide indicators is in high-throughput screening to discover drugs that may correct defective cellular processing and/or function of disease-causing CFTR mutants. Another new application is the use of cell-impermeable chloride indicators to measure chloride concentration in the airway surface liquid in cell culture models and in the in vivo trachea (12). The first biological application of a chloride indicator, SPQ, was reported in 1987 (13). As described below, numerous advances in indicator technology have been made since the first report, including the development of cell-permeable (14), cell-impermeable (15,16), long-wavelength (17,18), and dual-wavelength (19) indicators, as well as the development of a targetable green fluorescent protein-based halide indicator (20). The major advantages of a fluorescence-based assay of CFTR function are sensitivity, technical simplicity, and the ability to assay function in single cells and heterogeneous cell mixtures. Fluorescence assays are rapid, quantitative, and technically simple, and can be performed using fluorescence microscopy, automated fluorescence plate readers, or cell cytometry. In contrast, assays using radioactive 36Cl require relatively large amounts of materials, are technically difficult, and cannot be used to study single cells or heterogeneous cell mixtures. Single-channel electrophysiological measurements of CFTR function are also technically challenging and generally not suitable for screening applications; however, it should be noted that data on single-channel properties (open probability, gating kinetics, current-voltage relationships) cannot be obtained by fluorescence methods. This chapter describes the available fluorescence-based assays of CFTR function. Technical details and useful practical hints are provided, and potential pitfalls are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verkman, A. S. (1990) Development and biological applications of chloride-sensitive fluorescent indicators. Am. J. Physiol. 259, C375ā€“C388.

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Verkman, A. S. and Biwersi, J. (1995) Chloride-sensitive fluorescent indicators, in Methods in Neurosciences, Vol. 27. (Kraicer, J. and Dixon, S. J., eds.), Academic Press, pp. 328ā€“339.

    Google ScholarĀ 

  3. Verkman, A. S., Chao, A. C.. and Hartmann, T. (1992) Hormonal regulation of chloride conductance in cultured polar airway cells measured by a fluorescent indicator. Am. J. Physiol. 262, C23ā€“C31.

    CASĀ  PubMedĀ  Google ScholarĀ 

  4. Cheng, S. H., Rich, D. P., Marshall, J., Gregory, R. J., Welsh, M. J., and Smith, A. E. (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66, 1027ā€“1036.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Rommens, J. M., Dho, S., Bear, C. E., Kartner, N., Kennedy, D., Riordan, J. R., Tsui, L. C., and Foskett, J. K. (1991) cAMP-inducible chloride conductance in mouse fibroblast lines stably expressing the human cystic fibrosis transmembrane conductance regulator. Proc. Natl. Acad. Sci. USA 88, 7500ā€“7505.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Brown, R., Hong-Brown, L., Biwersi, J., Verkman, A. S., and Welch, W. (1996) Chemical chaperones correct the mutant phenotype of the DF508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1, 117ā€“125.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Cheng, S. H., Fang, S. L., Zabner, J., Marshall, J., Piraino, S., Schiavi, S. C., et al. (1995) Functional activation of the cystic fibrosis trafficking mutant DF508-CFTR by overexpression. Am. J. Physiol. 268, L615ā€“L624.

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Rich, D. P., Anderson, M. P., Gregory, R. J., Cheng, S. H., Paul, S., Jefferson, D. M., et al. (1990) Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347, 358ā€“363.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Mansoura, M., Biwersi, J., Ashlock, M., and Verkman, A. S. (1999) Fluorescent chloride indicators to assess the efficacy of CFTR cDNA delivery. Human Gene Therapy 10, 861ā€“875.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Porteous, D. J., Dorin, J. R., McLachlan, G., Davidson-Smith, H., Davidson, H., Stevenson, B. J., et al. (1997) Evidence for safety and efficacy of DOTAP cat-ionic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 4, 210ā€“218.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Gill, D. R., Southern, K. W., Mofford, K. A., Seddon, T., Huang, L., Sorgi, F., et al. (1997) A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 4, 199ā€“209.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Jayaraman, S., Song, Y., Vetrivel, L., Shankar, L., and Verkman, A. S. (2001) Non-invasive in vivo fluorescence measurement of airway surface liquid depth, salt concentration and pH. J. Clin. Invest. 107, 317ā€“324.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Illsley, N. P. and Verkman, A. S. (1987) Membrane chloride transport measured using a chloride-sensitive fluorescent indicator. Biochemistry 26, 1215ā€“1219.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Biwersi, J. and Verkman, A. S. (1991) Cell permeable fluorescent indicator for cytosolic chloride. Biochemistry 30, 7879ā€“7883.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Biwersi, J., Farah, N. Wang, Y. X. Ketchum, R., and Verkman, A. S. (1992) Synthesis of cell-impermeable Cl-sensitive fluorescent indicators with improved sensitivity and optical properties. Am. J. Physiol. 262, C243ā€“C250.

    CASĀ  Google ScholarĀ 

  16. Verkman, A. S., Sellers, M., Chao, A. C., Leung, T., and Ketcham, R. (1989) Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications. Anal. Biochem. 178, 355ā€“361.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Biwersi, J., Tulk, B., and Verkman, A. S. (1994) Long wavelength chloride-sensitive fluorescent indicators. Anal. Biochem. 219, 139ā€“143.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Jayaraman, S., Teitler, L., Skalski, B., and Verkman, A. S. (1999) Long-wavelength iodide-sensitive fluorescent indicators for measurement of functional CFTR expression in cells. Am. J. Physiol. 277, C1008ā€“C1018.

    CASĀ  PubMedĀ  Google ScholarĀ 

  19. Jayaraman, S., Biwersi, J., and Verkman A. S. (1999) Synthesis and characteriza-tion of dual-wavelength chloride sensitive fluorescent indicators for ratio imaging. Am. J. Physiol. 276, C747ā€“C757.

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Jayaraman, S., Haggie, P., Wachter, R., Remington, S. J., and Verkman, A. S. (2000) Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J. Biol. Chem. 275, 6047ā€“6050.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Jayaraman, S. and Verkman, A. S. (2000) Charge transfer mechanism for quenching of quinolinium fluorescence by halides. Biophys. Chem. 85, 49ā€“57.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Haggie, P., Jayaraman, S., and Verkman, A. S. (2001) Ratioable GFP-based halide indicators utilizing a novel energy transfer strategy. Biophys. J. 80, 654a.

    Google ScholarĀ 

  23. Galietta, L. J. V., Haggie, P. M., and Verkman, A. S. (2001) Green fluorescent protein-based halide indicators with improved chloride and iodide affnities. FEBS Lett. 499, 220ā€“224.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Verkman, A.S., Jayaraman, S. (2002). Fluorescent Indicator Methods to Assay Functional CFTR Expression in Cells. In: Skach, W.R. (eds) Cystic Fibrosis Methods and Protocols. Methods in Molecular Medicineā„¢, vol 70. Humana Press. https://doi.org/10.1385/1-59259-187-6:187

Download citation

  • DOI: https://doi.org/10.1385/1-59259-187-6:187

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-897-4

  • Online ISBN: 978-1-59259-187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics