Skip to main content

Methods for the Study of Intermolecular and Intramolecular Interactions Regulating CFTR Function

  • Protocol
  • 871 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 70))

Abstract

CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) is a cAMP-activated chloride channel present on the apical surfaces of epithelial cells. This protein has been shown to be responsible for salt and water transport across epithelia (1). CFTR has been implicated in two major diseases, namely, cystic fibrosis (CF) and secretory diarrhea. In CF, the synthesis and or functional activity of the CFTR Cl- channel is reduced. This autosomal recessive disorder affects approx 1 in 2500 Caucasians in the United States (1). Excessive CFTR activity is implicated in cases of toxin-induced secretory diarrhea (e.g., by cholera toxin and heat stable Escherichia coli enterotoxin) that stimulate cAMP or cGMP production in the gut (2). The protein encoded by the CF gene (CFTR) is a 1480-amino acid membrane-bound protein containing five major cytosolic domains, the N- and C-terminal tails, two nucleotide-binding domains (NBD 1 and 2), and a regulatory domain (R-domain). CFTR also has two sets of six transmembrane spanning domains. Physical interactions have been reported for various domains of CFTR with different proteins. The two opposing tails (N and C) of this Cl- channel connect to different regulatory networks by interacting with distinct proteins. The amino-terminal tail interacts directly with syntaxin 1A and in part is responsible for inhibiting CFTR Cl” current activity. Syntaxin 1A is highly expressed in the brain (3) and to a lesser extent in the lung and colon (4). Members of the syntaxin family of proteins have been implicated in membrane fusion (3,5). In the synapse, N-type calcium channels bind to syntaxin 1A (8,8), which negatively modulates the gating of these channels (9,11). The carboxy terminal tail interacts with PDZ (PSD-95, disc large, ZO-1) domain-containing proteins, and this interaction has been implicated in CFTR targeting to the apical (luminal) surface of polarized epithelial cells (12). A recent review summarizes some of these interactions (13). In this chapter, detailed methods will be presented and discussed that aid in the study of these interactions, with special emphasis on pulldown assays and pairwise binding assays.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Welsh, M. J., Tsui, L.-C., Boat, T. F., and Beaudet, A. L.(1995) Cystic fibrosis, in The Metabolic and Molecular Basis of Inherited Diseases: Membrane Transport Systems, vol. 3, (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.), McGraw-Hill, New York, pp. 379–387.

    Google Scholar 

  2. Chao, A. C., de Sauvage, F. J., Dong, Y. J., Wagner, J. A., Goeddel, D. V., and Gardner, P. (1994) Activation of intestinal CFTR Cl-channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J. 13, 1065–1072.

    CAS  PubMed  Google Scholar 

  3. Bennett, M. K., Garcia-Arrraros J. E., Elferink, L. A., Peterson, K., Fleming, A. M., Hazuka, C. D., and Scheller, R. H. (1993) The syntaxin family of vesicular trans-port receptors. Cell 74, 863–873.

    Article  CAS  PubMed  Google Scholar 

  4. Naren, A.P., Anke, D., Cormet-Boyaka, E., Boyaka, P. N., McGhee, J. R., Zhou, W., Akagawa, K., Fujiwara, T., Thome, U., Engelhardt, J. F., Nelson, D. J., and Kirk, K. L. (1999) Syntaxin 1A is Expressed in Airway Epithelial Cells Where it Modulates CFTR Cl- Currents. J.Clin. Invest. 105, 377–386.

    Article  Google Scholar 

  5. Rowe, T., Dascher, C., Bannykh, S., Plutner, H., and Balch, W. E. (1998) Role of vesicle-associated syntaxin 5 in the assembly of pre-Golgi intermediates. Science 279, 696–700.

    Article  CAS  PubMed  Google Scholar 

  6. Bennett, M. K., Calakos, N., and Scheller, R. H. (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Sci-ence 257, 255–259.

    CAS  Google Scholar 

  7. Yoshida, A., Oho, C., Omori, A., Kuwahara, R., Ito, T., and Takahashi, M. (1992) HPC-1 is associated with synaptotagmin and omega-conotoxin receptor. J. Biol. Chem. 267, 24,925–24,928.

    CAS  Google Scholar 

  8. Sheng, Z. H., Rettig, J., Takahashi, M., and Catterall, W. A. (1994) Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13, 1303–1313.

    Article  CAS  PubMed  Google Scholar 

  9. Bezprozvanny, I., Scheller, R. H., and Tsien, R. W. (1995) Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 378, 623–626.

    Article  CAS  PubMed  Google Scholar 

  10. Wiser, O., Bennett, M. K., and Atlas, D. (1996) Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L-and N-type Ca2+channels. EMBO J. 15, 4100–4110.

    CAS  PubMed  Google Scholar 

  11. Stanley, E. F. and Mirotznik, R. R. (1997) Cleavage of syntaxin prevents G-pro-tein regulation of presynaptic calcium channels. Nature 385, 340–343.

    Article  CAS  PubMed  Google Scholar 

  12. Moyer, B. D., Duhaime, M., Shaw, C., Denton, J., Reynolds, D., Karlson, K. H., et al. (2000) The PDZ interacting domain of CFTR is required for functional expression in the apical plasma membrane. J.Biol. Chem. 275, 27,069–27,074.

    CAS  PubMed  Google Scholar 

  13. Naren, A. P. and Kirk, K. L. (2000) CFTR Cl- channels and regulatory networks. News in Physiol. Sci. 15, 57–61.

    CAS  Google Scholar 

  14. Naren, A. P., Nelson, D. J., Xie, W., Jovov, B., Tousson, A., Pevsner, J., et al. (1997) Regulation of CFTR chloride channels by syntaxin and Munc 18 isoforms. Nature 390, 302–305.

    Article  CAS  PubMed  Google Scholar 

  15. Naren, A. P., Quick, M. W., Collawn, J. F., Nelson, D. J., and Kirk, K. L. (1998) Syntaxin 1A directly inhibits CFTR chloride channel by means of domain-specific interactions. Proc. Natl. Acad. Sci. USA 95, 10,972–10,977.

    Article  CAS  PubMed  Google Scholar 

  16. Naren, A. P., Cormet-Boyaka. E., Fu, J., Villain, M., Blalock, E., Quick M. W., and Kirk, K. L. (1999) CFTR Chloride channel regulation by an interdomain interaction. Science 286, 544–548.

    Article  CAS  PubMed  Google Scholar 

  17. Jovov, B., Ismailov, I. I., Berdiev, B. K., Fuller, C. M., Sorscher, E. J., Dedman, J. R., Kaetzel, M. A., and Benos, D. J. (1995) Interaction between cystic fibrosis transmembrane conductance regulator and outwardly rectified chloride channels. J.Biol. Chem. 270, 29,194–29,200.

    Article  CAS  PubMed  Google Scholar 

  18. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., et al. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.

    Article  CAS  PubMed  Google Scholar 

  19. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  20. Ramachandra, M., Gottesman, M. M., and Pastan, I. (1998) Recombinant vaccinia virus vectors for functional expression of P-glycoprotein in mammalian cells. Meth. Enzymol. 292, 441–455.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng, S. H., Rich, D. P., Marshall, J., Gregory, R. J., Welsh, M. J., and Smith, A. E. (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66, 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  22. Kushima, Y., Fujiwara, T., Sanada, M., and Akagawa, K. (1997) Characterization of HPC-1 antigen, an isoform of syntaxin-1, with the isoform-specific monoclonal antibody, 14D8. J Mol. Neurosci. 8, 19–27.

    Article  CAS  PubMed  Google Scholar 

  23. Villain, M., Jackson, P. L., Manion, M. K., Dong, W. J., Su, Z., Fassina, G., et al. (2000) De novo design of peptides targeted to the EF hands of calmodulin. J Biol. Chem. 275, 2676–2685.

    Article  CAS  PubMed  Google Scholar 

  24. Hung, L. W., Wang, I.X., Nikaido, K., Liu, P. Q., Ames, G. F. and Kim, S. H. (1998) Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396, 703–707.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Naren, A.P. (2002). Methods for the Study of Intermolecular and Intramolecular Interactions Regulating CFTR Function. In: Skach, W.R. (eds) Cystic Fibrosis Methods and Protocols. Methods in Molecular Medicine™, vol 70. Humana Press. https://doi.org/10.1385/1-59259-187-6:175

Download citation

  • DOI: https://doi.org/10.1385/1-59259-187-6:175

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-897-4

  • Online ISBN: 978-1-59259-187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics