Skip to main content

Probing CFTR Channel Structure and Function Using the Substituted-Cysteine-Accessibility Method

  • Protocol
Cystic Fibrosis Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 70))

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) forms a chloride channel whose activation is regulated by phosphorylation and by ATP binding and hydrolysis (1-4). The functional properties of the channel have been extensively studied using electrophysiological techniques (4). Less is known about the structural bases for the functional properties. The cloning of CFTR in 1989 provided the primary amino acid sequence and a putative transmembrane topology of the protein (5). In order to understand the structural bases for the functional properties of the channel, we sought to identify the residues lining the ion channel because they are likely to be the major determinants of the channel’s functional properties. Although the channel-lining residues lie within membrane-spanning segments, they are part of the water-accessible surface of the protein. The substituted-cysteine-accessibility method (SCAM), which we developed, provides an approach to identify systematically the channel-lining residues (6-9). We have applied SCAM to three of CFTR’s 12 putative membrane-spanning segments (9-11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riordan, J. R. (1993) The cystic fibrosis transmembrane conductance regulator. Annu. Rev. Physiol. 55, 609–630.

    Article  CAS  PubMed  Google Scholar 

  2. Gadsby, D. C. and Nairn, A. C. (1999) Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol. Rev. 79, S77–S107.

    CAS  PubMed  Google Scholar 

  3. Sheppard, D. N. and Welsh, M. J. (1999) Structure and function of the CFTR chloride channel. Physiol. Rev. 79, S23–45.

    CAS  PubMed  Google Scholar 

  4. Akabas, M. H. (2000) Cystic fibrosis transmembrane conductance regulator. Structure and function of an epithelial chloride channel. J Biol. Chem. 275, 3729–3732.

    Article  CAS  PubMed  Google Scholar 

  5. Riordan, J. R., Rommens, J. M., Kerem, B. S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J. L., Drumm, M. T., Iannuzzi, M. C., Collins, F. S., and Tsui, L. C. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 254, 1066–1073.

    Article  Google Scholar 

  6. Akabas, M. H., Stauffer, D. A., Xu, M., and Karlin, A. (1992) Acetylcholinereceptor channel structure probed in cysteine-substitution mutants. Science 258, 307–310.

    Article  CAS  PubMed  Google Scholar 

  7. Xu, M. and Akabas, M. H. (1993) Amino acids lining the channel of the γ-aminobutyric acid type A receptor identified by cysteine substitution. J Biol. Chem. 268, 21,505–21,508.

    CAS  PubMed  Google Scholar 

  8. Akabas, M. H., Kaufmann, C., Archdeacon, P., and Karlin, A. (1994) Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the α subunit. Neuron 13, 919–927.

    Article  CAS  PubMed  Google Scholar 

  9. Akabas, M. H., Kaufmann, C., Cook, T. A., and Archdeacon, P. (1994) Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator. J Biol. Chem. 269, 14,865–14,868.

    CAS  PubMed  Google Scholar 

  10. Cheung, M. and Akabas, M. H. (1996) Identification of CFTR channel-lining residues in and flanking the M6 membrane-spanning segment. Biophys. J. 70, 2688–2695.

    Article  CAS  PubMed  Google Scholar 

  11. Akabas, M. H. (1998) Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator. Biochemistry 37, 12,233–12,240.

    Article  CAS  PubMed  Google Scholar 

  12. Eskandari, S., Wright, E. M., Kreman, M., Starace, D. M., and Zampighi, G. A. (1998) Structural analysis of cloned plasma membrane proteins by freeze-fracture electron microscopy. Proc. Natl. Acad. Sci. USA 95, 11,235–11,240.

    Article  CAS  PubMed  Google Scholar 

  13. Zerhusen, B., Zhao, J., Xie, J., Davis, P. B., and Ma, J. (1999) A single conductance pore for chloride ions formed by two cystic fibrosis transmembrane conductance regulator molecules. J Biol. Chem. 274, 7627–7630.

    Article  CAS  PubMed  Google Scholar 

  14. Karlin, A. and Akabas, M. H. (1995) Towards a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15, 1231–1244.

    Article  CAS  PubMed  Google Scholar 

  15. Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) The structure of the potassium channel: molecular basis of K+conduction and selectivity. Science 280, 69–77.

    Article  CAS  PubMed  Google Scholar 

  16. Frillingos, S., Gonzalez,A.,and Kaback, H.R. (1997)Cysteine-scanningmutagenesis of helix IV and the adjoining loops in the lactose permease of Escherichia coli: Glu 126 and Arg144 are essential. Biochemistry 36, 14,284–14,290.

    CAS  Google Scholar 

  17. Olami, Y., Rimon, A., Gerchman, Y., Rothman, A., and Padan, E. (1997) Histidine 225, a residue of the NhaA-Na+/H+antiporter of Escherichia coli is exposed and faces the cell exterior. J Biol. Chem. 272, 1761–1768.

    CAS  Google Scholar 

  18. Javitch, J. A. (1998) Mapping the binding-site crevice of the D2 receptor. Adv. Pharmacol. 42, 412–415.

    Article  CAS  PubMed  Google Scholar 

  19. Mindell, J. A., Zhan, H., Huynh, P. D., Collier, R. J., and Finkelstein, A. (1994) Reaction of diphtheria toxin channels with sulfhydryl-specific reagents: observation of chemical reactions at the single molecule level. Proc. Natl. Acad. Sci. USA 91, 5272–5276.

    Article  CAS  PubMed  Google Scholar 

  20. Loo, T. W. and Clarke, D. M. (1995) Membrane topology of a cysteine-less human P-glycoprotein. J Biol. Chem. 270, 843–848.

    Article  CAS  PubMed  Google Scholar 

  21. Creighton, T. E. (1993) Proteins: structures and molecular properties, Freeman, New York

    Google Scholar 

  22. Chothia, C. (1976) The nature of the accessible and buried surfaces in proteins. J Mol. Biol. 105, 1–14.

    Article  CAS  PubMed  Google Scholar 

  23. Chou, P. Y. and Fasman, G. D. (1977) β-turns in proteins. J Mol. Biol. 115, 135–175.

    Article  CAS  PubMed  Google Scholar 

  24. Levitt, M. (1978) Conformational preferences of amino acids in globular proteins. Biochemistry 17, 4277–4285.

    Article  CAS  PubMed  Google Scholar 

  25. Li, S. C. and Deber, C. M. (1994) A measure of helical propensity for amino acids in membrane environments. Nat. Struct. Biol. 1, 368–373.

    Article  CAS  PubMed  Google Scholar 

  26. Gray, T. M. and Matthews, B. W. (1984) Intrahelical hydrogen bonding of serine, threonine and cysteine residues within α-helices and its relevance to membranebound proteins. J Mol. Biol. 175, 75–81.

    Article  CAS  PubMed  Google Scholar 

  27. Cotten, J. F. and Welsh, M. J. (1997) Covalent modification of the regulatory domain irreversibly stimulates cystic fibrosis transmembrane conductance regulator. J Biol. Chem. 272, 25,617–25,622.

    Article  CAS  PubMed  Google Scholar 

  28. Stauffer, D. A. and Karlin, A. (1994) Electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding-site cysteines with charged methanethiosulfonates. Biochemistry 33, 6840–6849.

    Article  CAS  PubMed  Google Scholar 

  29. Kenyon, G. L. and Bruice, T. W. (1977) Novel sulfhydryl reagents. Meth. Enzymol. 47, 407–30.

    Article  CAS  PubMed  Google Scholar 

  30. Lu, Q. and Miller, C. (1995) Silver as a probe of pore-forming residues in a potassium channel. Science 268, 304–307.

    Article  CAS  PubMed  Google Scholar 

  31. Xu, M., Covey, D. F., and Akabas, M. H. (1995) Interaction of picrotoxin with GABAA receptor channel-lining residues probed in cysteine mutants. Biophys. J. 69, 1858–1867.

    Article  CAS  PubMed  Google Scholar 

  32. Karlin, A. and Akabas, M. H. (1998) Substituted-cysteine accessibility method. Meth. Enzymol. 293, 123–145.

    Article  CAS  PubMed  Google Scholar 

  33. Yang, A.-S., Gunner, M. R., Sampogna, R., Sharp, K., and Honig, B. (1993) On the calculation of pKa’s in proteins. Proteins 15, 252–265.

    Article  CAS  PubMed  Google Scholar 

  34. Holmgren, M., Liu, Y., Xu, Y., and Yellen, G. (1996) On the use of thiol-modifying agents to determine channel topology. Neuropharmacology 35, 797–804.

    Article  CAS  PubMed  Google Scholar 

  35. Roberts, D. D., Lewis, S. D., Ballou, D. P., Olson, S. T., and Shafer, J. A. (1986) Reactivity of small thiolate anions and cysteine-25 in papain towards methyl-methanethiosulfonate. Biochemistry 25, 5595–5601.

    Article  CAS  PubMed  Google Scholar 

  36. Danielson, M. A., Bass, R. B., and Falke, J. J. (1997) Cysteine and disulfide scanning reveals a regulatory alpha-helix in the cytoplasmic domain of the aspartate receptor. J Biol. Chem. 272, 32,878–32,888.

    Article  CAS  PubMed  Google Scholar 

  37. Lemmon, M. A. and Engelman, D. M. (1994) Specificity and promiscuity in membrane helix interactions. Q. Rev. Biophys. 27, 157–218.

    Article  CAS  PubMed  Google Scholar 

  38. Pascual, J. M., Shieh, C. C., Kirsch, G. E., and Brown, A. M. (1995) K+pore structure revealed by reporter cysteines at inner and outer surfaces. Neuron 14, 1055–1063.

    Article  CAS  PubMed  Google Scholar 

  39. Cheung, M. and Akabas, M. H. (1997) Locating the anion-selectivity filter of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. J Gen. Physiol. 109, 289–300.

    Article  CAS  PubMed  Google Scholar 

  40. Guinamard, R. and Akabas, M. H. (1999) Arg352 is a major determinant of charge selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel. Biochemistry 38, 5528–5537.

    Article  CAS  PubMed  Google Scholar 

  41. Woodhull, A. M. (1973) Ionic blockage of sodium channels in nerve. J Gen. Physiol. 61, 687–708.

    Article  CAS  PubMed  Google Scholar 

  42. Wilson, G. G. and Karlin, A. (1998) The location of the gate in the acetylcholine receptor channel. Neuron 20, 1269–1281.

    Article  CAS  PubMed  Google Scholar 

  43. Pascual, J. M. and Karlin, A. (1998) Delimiting the binding site for quaternary ammonium lidocaine derivatives in the acetylcholine receptor channel. J Gen. Physiol. 112, 611–621.

    Article  CAS  PubMed  Google Scholar 

  44. Howard, M., DuVall, M. D., Devor, D. C., Dong, J. Y., Henze, K., and Frizzell, R. A. (1995) Epitope tagging permits cell surface detection of functional CFTR. Am. J. Physiol. 269, C1565–1576.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Akabas, M.H. (2002). Probing CFTR Channel Structure and Function Using the Substituted-Cysteine-Accessibility Method. In: Skach, W.R. (eds) Cystic Fibrosis Methods and Protocols. Methods in Molecular Medicine™, vol 70. Humana Press. https://doi.org/10.1385/1-59259-187-6:159

Download citation

  • DOI: https://doi.org/10.1385/1-59259-187-6:159

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-897-4

  • Online ISBN: 978-1-59259-187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics