Skip to main content

Studies of the Molecular Basis for Cystic Fibrosis Using Purified Reconstituted CFTR Protein

  • Protocol
  • 908 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 70))

Abstract

Studies of purified, reconstituted cystic fibrosis transmembrane conductance regulator (CFTR) protein have proven invaluable in defining those functions that are intrinsic to the CFTR molecule. Reconstitution of purified CFTR protein in planar lipid bilayers provided direct evidence that CFTR possesses intrinsic activity as a protein kinase A (PKA)-regulated chloride channel (1). Further, it appears that the regulation of the CFTR channel gate (the structure essential for opening and closing of the channel pore) reported in biological membranes has been recapitulated with fidelity in studies of reconstituted purified protein. For example, patch clamp studies on biological membranes revealed that ATP binding and/or hydrolysis by the PKA-phosphorylated CFTR channel caused channel opening and closing (2-6). This unique requirement for ATP in channel gating was also reported in reconstitution studies of the purified protein (7,8), indicating that the CFTR protein itself can mediate regulated chloride flux without the requirement for accessory proteins. These results also justify the use of purified protein in detailed biochemical and structural studies of mechanisms underlying the function of this protein. The CFTR molecule is known to be comprised of two membrane-spanning domains (TMDs), two nucleotide-binding domains (NBDs), and the phosphorylationdependent regulatory or R domain (9). However, to date, our understanding of the structure of these domains and the coordination of their activities is limited.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bear, C. E. et al. (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68, 809–818.

    Article  CAS  PubMed  Google Scholar 

  2. Hwang, T.-C., Nagel, G., Nairn, A., and Gadsby, D. C. (1994) Regulation of the gating of cystic fibrosis transmembrane conductance regulator Cl channels by phosphorylation and ATP hydrolysis. Proc. Natl. Acad. Sci. USA 91, 4698–4702.

    Article  CAS  PubMed  Google Scholar 

  3. Gunderson, K. L. and Kopito, R. R. (1994) Effects fo pyrophosphate and nucleotide analogs suggest a role for ATP hydrolysis in cystic fibrosis transmembrane conductance regulator channel gating. J Biol. Chem. 269, 19,349–19,353.

    CAS  PubMed  Google Scholar 

  4. Gunderson, K. L. and Kopito, R. R. (1995) Conformational states of CFTR associated with channel gating: the role of ATP binding and hydrolysis. Cell 82, 231–239.

    Article  CAS  PubMed  Google Scholar 

  5. Carson, M. R., Travis, S. M., and Welsh, M. J. (1995) The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. J Biol. Chem. 270, 1711–1717.

    Article  CAS  PubMed  Google Scholar 

  6. Zeltwanger, S., Wang, F., Wang, G. T., Gillis, K. D., and Hwang, T. C. (1999) Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme. J Gen Physiol 113, 541–554.

    Article  CAS  PubMed  Google Scholar 

  7. Li, C., et al. (1996) ATPase activity of the Cystic Fibrosis Transmembrane Conductance Regulator. J Biol. Chem. 271, 28,463–28,468.

    Article  CAS  PubMed  Google Scholar 

  8. Bear, C. E., et al. (1997) Coupling of ATP hydrolysis with channel gating by purified, reconstituted CFTR. J Bioenerg. Biomembr. 29, 465–473.

    Article  CAS  PubMed  Google Scholar 

  9. Riordan, J., et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.

    Article  CAS  PubMed  Google Scholar 

  10. Ko, Y. H. and Pedersen, P. L. (1995) The first nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator can function as an active ATPase. J Biol. Chem. 270, 22,093–22,096.

    Article  CAS  PubMed  Google Scholar 

  11. Ramjeesingh, M., et al. (1999) Walker mutations reveal loose relationship between catalytic and channel-gating activities of purified CFTR (cystic fibrosis transmembrane conductance regulator). Biochemistry 38, 1463–1468.

    Article  CAS  PubMed  Google Scholar 

  12. Anderson, M. P., et al. (1991) Nucleotide triphosphates are required to open the CFTR chloride channel. Cell 67, 775–784.

    Article  CAS  PubMed  Google Scholar 

  13. Hwang, T. C., Horie, M., and Gadsby, D. C. (1993) Functionally distinct phosphoforms underlie incremental activation of protein kinase-regulated Cl-conductance in mammalian heart. J Gen. Physiol. 101, 629–650.

    Article  CAS  PubMed  Google Scholar 

  14. Baukrowitz, T., Hwang, T.-C., Nairn, A., and Gadsby, D. (1994) Coupling of CFTR Cl channel gating to an ATP hydrolysis cycle. Neuron 12, 473–482.

    Article  CAS  PubMed  Google Scholar 

  15. George, S. T., Arbabian, M. A., Ruoho, A. E., Kiely, J., and Malbon, C. C. High-efficiency expression of mammalian beta-adrenergic receptors in baculovirusinfected insect cells. Biochem. Biophys. Res. Commun. 163, 1265–1269.

    Google Scholar 

  16. Keinanen, K., Kohr, G., Seeburg, P. H., Laukkanen, M. L., and Oker-Blom, C. High-level expression of functional glutamate receptor channels in insect cells. Biotechnology (NY) 12, 802–806.

    Google Scholar 

  17. Germann, U. A. (1998) Baculovirus-mediated expression of human multidrug resistance cDNA in insect cells and functional analysis of recombinant P-glycoprotein. Meth. Enzymol. 292, 427–441.

    Article  CAS  PubMed  Google Scholar 

  18. Ramjeesingh, M., et al. (1999) Purification and reconstitution of epithelial chloride channel cystic fibrosis transmembrane conductance regulator. Meth. Enzymol. 294, 227–246.

    Article  CAS  PubMed  Google Scholar 

  19. Li, C., et al. (1993) The cystic fibrosis mutation (delta F508) does not influence the chloride channel activity of CFTR. Nat. Genet. 3, 311–316.

    Article  CAS  PubMed  Google Scholar 

  20. Ramjeesingh, M., et al. (1997) A novel procedure for the efficient purification of the cystic fibrosis transmembrane conductance regulator (CFTR). Biochem. J. 327, 17–21.

    CAS  PubMed  Google Scholar 

  21. Maduke, M., Pheasant, D. J.. and Miller, C. (1999) High-level expression, functional reconstitution, and quaternary structure of a prokaryotic ClC-type chloride channel. J Gen. Physiol. 114, 713–722.

    Article  CAS  PubMed  Google Scholar 

  22. Loo, T. W. and Clarke, D. M. (1995) Rapid purification of human P-glycoprotein mutants expressed transiently in HEK 293 cells by nickel-chelate chromatogra-phy and characterization of their drug-stimulated ATPase activities. J Biol. Chem. 270

    Google Scholar 

  23. Shepherd, F. H. H. A. (1995) The potential of fluorinated surfactants in membrane biochemistry. Analy. Biochem. 224, 21–27.

    Article  CAS  Google Scholar 

  24. Cerione, R. A., et al. (1984) The mammalian beta 2-adrenergic receptor: reconstitution of functional interactions between pure receptor and pure stimulatory nucle-otide binding protein of the adenylate cyclase system. Biochemistry 23, 4519–4525.

    Article  CAS  PubMed  Google Scholar 

  25. Noel, H., Goswami, T., and Pande, S. V. (1985) Solubilization and reconstitution of rat liver mitochondrial carnitine acylcarnitine translocase. Biochemistry 24, 4504–4509.

    Article  CAS  PubMed  Google Scholar 

  26. Rigaud, J. L., Pitard, B., and Levy, D. (1995) Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim. Biophys. Acta 1231, 223–246.

    Article  PubMed  Google Scholar 

  27. Egan, R. W. (1976) Hydrophile-lipophile balance and critical micelle concentration as key factors influencing surfactant disruption of mitochondrial membranes. J Biol. Chem. 251, 4442–4447.

    CAS  PubMed  Google Scholar 

  28. Doige, C. A., Yu, X. Y., and Sharom, F. J. (1993) The effects of lipids and detergents on the ATP-ase active P-glycoprotein. Biochim. Biophys. Acta 1146, 65–72.

    Article  CAS  PubMed  Google Scholar 

  29. Ramjeesingh, M., Huan, L.-J., Garami, E., and Bear, C. E. (1999) Novel method for evaluation of the oligomeric structure of membrane proteins. Biochem. J. 342, 119–123.

    Article  CAS  PubMed  Google Scholar 

  30. Papahadjopoulos, D. and Watkins, J. C. (1967) Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals. Biochim. Biophys. Acta 135, 639–652.

    Article  CAS  PubMed  Google Scholar 

  31. Woodbury, D. and Miller, C. (1990) Nystatin-induced liposome fusion. A versatile approach to ion channel reconstitution into planar bilayers. Biophys. J. 58, 833–839.

    Article  CAS  PubMed  Google Scholar 

  32. Cheng, S. H., et al. (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66, 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  33. Picciotto, M. R., Cohn, J. A., Bertuzzi, G., Greengard, P., and Nairn, A. C. J Biol. Chem. 267, 12,742–12,752.

    Google Scholar 

  34. Seibert, F. S., et al. (1995) cAMP-dependent protein kinase-mediated phosphorylation of cystic fibrosis transmembrane conductance regulator residue Ser-753 and its role in channel activation. J Biol. Chem. 270, 2158–2162.

    Article  CAS  PubMed  Google Scholar 

  35. Jia, Y., Mathews, C. J., and Hanrahan, J. W. (1997) Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J Biol. Chem. 272, 4978–4984.

    Article  CAS  PubMed  Google Scholar 

  36. Anderson, M., Rich, D., Gregory, R., Smith, A., and Welsh, M. (1991) Generation of cAMP-activated chloride currents by expression of CFTR. Science 251, 679–682.

    Article  CAS  PubMed  Google Scholar 

  37. Tabcharani, J. A., Chang, X. B., Riordan, J. R., and Hanrahan, J. W. (1991) Phosphorylation-regulated Cl-channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352, 628–631.

    Article  CAS  PubMed  Google Scholar 

  38. Welsh, M. J. and Smith, A. E. (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73, 1251–1254.

    Article  CAS  PubMed  Google Scholar 

  39. Zielenski, J. and Tsui, L. C. (1995) Cystic fibrosis: genotypic and phenotypic variations. Annu. Rev. Genet. 29, 777–807.

    Article  CAS  PubMed  Google Scholar 

  40. Cheng, S. H., et al. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834.

    Article  CAS  PubMed  Google Scholar 

  41. Denning, G. M., et al. (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive [see comments]. Nature 358, 761–764.

    Article  CAS  PubMed  Google Scholar 

  42. Haardt, M., Benharouga, M., Lechardeur, D., Kartner, N., and Lukacs, G. L. (1999) C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation. J Biol. Chem. 274, 21,873–21,877.

    Article  CAS  PubMed  Google Scholar 

  43. Massiah, M. A., Ko, Y. H., Pedersen, P. L., and Mildvan, A. S. (1999) Cystic fibrosis transmembrane conductance regulator: solution structures of peptides based on the Phe508 region, the most common site of disease-causing DeltaF508 mutation. Biochemistry 38, 7453–7461.

    Article  CAS  PubMed  Google Scholar 

  44. Kartner, N., Augustinas, O., Jensen, T. J., Naismith, A. L., and Riordan, J. R. (1992) Mislocalization of delta F508 CFTR in cystic fibrosis sweat gland. Nat. Genet. 1, 321–327.

    Article  CAS  PubMed  Google Scholar 

  45. Gregory, R. J., et al. (1991) Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. Mol. Cell. Biol. 11, 3886–3893.

    CAS  PubMed  Google Scholar 

  46. Yang, Y., et al. (1993) Molecular basis of defective anion transport in L cells expressing recombinant forms of CFTR. Hum. Mol. Genet. 2, 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  47. Drumm, M. L., et al. (1991) Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes. Science 254, 1797–1799.

    Article  CAS  PubMed  Google Scholar 

  48. Dalemans, W., et al. (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation [see comments]. Nature 354, 526–528.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, F., Zeltwanger, S., Hu, S., and Hwang, T. C. (2000) Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels. J Physiol. (Lond.) 524 Pt 3, 637–648.

    Article  CAS  Google Scholar 

  50. Haws, C. M., et al. (1996) Delta F508-CFTR channels: kinetics, activation by forskolin, and potentiation by xanthines. Am. J. Physiol. 270, C1544–1555.

    CAS  PubMed  Google Scholar 

  51. Hung, L.-W., et al. (1998) Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396, 703–707.

    Article  CAS  PubMed  Google Scholar 

  52. Linsdell, P. and Hanrahan, J. (1998) Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. J Gen. Physiol. 111, 601–614.

    Article  CAS  PubMed  Google Scholar 

  53. Linsdell, P. and Hanrahan, J. (1998) Glutathione permeability of CFTR. Am. J. Physiol. 275, C323–326.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Kogan, I., Ramjeesingh, M., Li, C., Bear, C.E. (2002). Studies of the Molecular Basis for Cystic Fibrosis Using Purified Reconstituted CFTR Protein. In: Skach, W.R. (eds) Cystic Fibrosis Methods and Protocols. Methods in Molecular Medicine™, vol 70. Humana Press. https://doi.org/10.1385/1-59259-187-6:143

Download citation

  • DOI: https://doi.org/10.1385/1-59259-187-6:143

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-897-4

  • Online ISBN: 978-1-59259-187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics