Skip to main content

Seeding Neural Stem Cells on Scaffolds of PGA, PLA, and Their Copolymers

  • Protocol
Neural Stem Cells: Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 198))

Abstract

Tissue engineering has arisen to address the extreme shortage of tissues and organs for transplantation and repair. One of the most successful techniques has been the seeding and culturing of cells on three-dimensional biodegradable scaffolds in vitro followed by implantation in vivo (1,2). This technique has been used to treat bladder conditions (3) and cartilage (4) and skin (5) defects, and is being studied for a variety of other applications. While matrices have been made from a host of natural and synthetic materials, there has been particular interest in the biodegradable polymers of poly(glycolic acid) (PGA), poly(lactic acid) (PLA), and their copolymers poly(lactic-co-glycolic acid) (PLGA) Fig. 1). This particular family of degradable esters is very attractive for tissue engineering because the members are readily available and can be easily processed into a variety of structures, their degradation can be controlled through the ratio of glycolic acid to lactic acid subunits, and the polymers have already been approved for use in a number of applications by the FDA. Furthermore, recent research has shown this family of polymers to be biocompatible in the brain (6) and spinal cord (7).

The chemical structures of PLA, PGA, and PLGA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer, R, Vacanti, J. P., Vacanti, C. A., Atala, A., Freed, L. E., and Vunjak-Novakovic, G. (1995) Tissue engineering: biomedical applications. Tissue Engineering 1, 151–161.

    Article  PubMed  CAS  Google Scholar 

  2. Langer, R. and Vacanti, J. P. (1993) Tissue Engineering. Science 260, 920–926.

    Article  PubMed  CAS  Google Scholar 

  3. Atala, A. (2000) Tissue engineering for bladder substitution. World Journal of Urology 18, 364–370.

    Article  PubMed  CAS  Google Scholar 

  4. Temenoff, J. S. and Mikos, A. G. (2000) Tissue engineering for regeneration of articular cartilage. Biomaterials 21, 431–440.

    Article  PubMed  CAS  Google Scholar 

  5. Pomahac, B., Svensjo, T., Yao, F., Brown, H., and Eriksson, E. (1998) Tissue engineering of skin. Critical Reviews in Oral Biology and Medicine 9, 333–344.

    Article  PubMed  CAS  Google Scholar 

  6. Kou, J. H., Emmett, C., Shen, P., Aswani, S., Iwamoto, T., Vaghefi, F., Cain, G., and Sanders, L. (1997) Bioerosion and biocompatibility of poly(d, l-lactic-co-glycolic acid) implants in brain. Journal of Controlled Release 43, 123–130.

    Article  Google Scholar 

  7. Gautier, S. E., Oudega, M., Fragoso, M., Chapon, P., Plant, G. W., Bunge, M. B., and Parel, J.-M. (1998) Poly(α-hydroxyacids) for application in the spinal cord: resorbability and biocompatability with Adult Rat Schwann cells and spinal cord. Journal of Biomedical Materials Research 42, 642–654.

    Article  PubMed  CAS  Google Scholar 

  8. Bellamkonda, R., Ranieri, J. P., Bouche, N., and Aebischer, P. (1995) Hydrogel-based three dimensional matrix for neural cells. Journal of Biomedical Materials Research 29, 663–671.

    Article  PubMed  CAS  Google Scholar 

  9. Bellamkonda, R. and Aebischer, P. (1994) Review: Tissue engineering in the nervous system. Biotechnology and Bioengineering 43, 543–554.

    Article  PubMed  CAS  Google Scholar 

  10. Borkenhagen, M. and Aebischer, P. (1996) Tissue engineering approaches for central and peripheral nervous-system regeneration. MRS Bulletin 21, 59–61.

    Google Scholar 

  11. Khan, T., Dauzvardis, M., and Sayers, S. (1991) Carbon filament implants promote axonal growth across the transected rat spinal cord. Brain Research 541, 139–145.

    Article  PubMed  CAS  Google Scholar 

  12. Marchand, R. and Woerly, S. (1990) Transected spinal cords grafted with in situ self-assembled collagen matrices. Neuroscientist 36, 45–60.

    CAS  Google Scholar 

  13. Woerly, S., Petrov, P., Sykova, E., Roitbak, T., Simonova, Z., and Harvey, A. (1999) Neural tissue formation within porous hydrogels implanted in brain and spinal cord lesions: Ultrastructural, immunohistochemical, and diffusion studies. Tissue Engineering 5, 467–488.

    Article  PubMed  CAS  Google Scholar 

  14. Xu, X. M., Guénard, V., Kleitman, N., and Bunge, M. B. (1995) Axonal regeneration into schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. Journal of Comparative Neurology 351, 145–160.

    Article  PubMed  CAS  Google Scholar 

  15. Xu, X. M., Guénard, V., Kleitman, N., Aebischer, P., and Bunge, M. B. (1995) A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into schwann cell grafts in adult rat thoracic spinal cord. Experimental Neurology 134, 261–272.

    Article  PubMed  CAS  Google Scholar 

  16. Xu, X. M., Chen, A., Guénard, V., Kleitman, N., and Bunge, M. B. (1997) Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of the transected adult rat spinal cord. Journal of Neurocytology 26, 1–16.

    Article  PubMed  CAS  Google Scholar 

  17. Xu, X., Zhang, S.-X., Li, H., Aebischer, P., and Bunge, M. (1999) Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. European Journal of Neuro science 11, 1723–1740.

    Article  CAS  Google Scholar 

  18. Ramón-Cueto, A., Plant, G. W., Avila, J., and Bunge, M. B. (1998) Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. Journal of Neuroscience 18, 3803–3815.

    PubMed  Google Scholar 

  19. Lavik, E., Teng, Y. D., Zurakowski, D., Qu, X., Snyder, E., and Langer, R. (2001) Functional recovery following spinal cord hemisection mediated by a unique polymer scaffold seeded with neural stem cells. MRS Symposium Proceedings 662, 001.2.1–001.2.5.

    Google Scholar 

  20. Vacanti, M., Leonard, J., Dore, B., Bonassar, L., Cao, Y., Stachelek, S., Yu, C., O’Connell, F., Vacanti, J., and Vacanti, C. (2000) Tissue engineered spinal cord. FASEB Journal 14 (4), A446–A446.

    Google Scholar 

  21. Mikos, A. G., Thorsen, A. J., Czerwonka, L. A., Bao, Y., Winslow, D. N., and Langer, R. (1994) Preparation and characterization of poly(L-lactic acid) foams. Polymer 35, 1068–1077.

    Article  CAS  Google Scholar 

  22. Dykstra, M. J. (1993) A Manual of Applied Technique for Biological Electron Microscopy, Plenum Press, New York, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Lavik, E., Teng, Y.D., Snyder, E., Langer, R. (2002). Seeding Neural Stem Cells on Scaffolds of PGA, PLA, and Their Copolymers. In: Zigova, T., Sanberg, P.R., Sanchez-Ramos, J.R. (eds) Neural Stem Cells: Methods and Protocols. Methods in Molecular Biology™, vol 198. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-186-8:89

Download citation

  • DOI: https://doi.org/10.1385/1-59259-186-8:89

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-964-3

  • Online ISBN: 978-1-59259-186-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics