Skip to main content

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 173))

Abstract

Until 1984, structural information of biomolecules at atomic resolution could only be determined by X-ray diffraction techniques with protein single crystals (1). In the mid-1980s, Wüthrich and co-workers demonstrated that nuclear magnetic resonance (NMR) spectroscopy (2) could be used as a technique for protein structure determination (3). This permits biomolecular structure determination

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drenth, J. (1994) Principles of Protein X-ray Crystallography. Springer, New York.

    Google Scholar 

  2. Abragam, A. (1961) Principles of Nuclear Magnetism. Clarendon, Oxford.

    Google Scholar 

  3. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids. Wiley, New York.

    Google Scholar 

  4. Arseniev, A. S., Kondakov, V. I., Maiorov, V. N., and Bystrov, V. F. and Ovchinnikov, I. A. (1983) Conformation NMR Annalysis of the spatial structure of Butkus eupeus insectotoxin 15A. Bioeng. Rhim. 9, 1667–1689.

    Google Scholar 

  5. Braun, W., Bosch, C., Brown, L. R., Gö, N., and Wüthrich, K. (1981) Combined use of proton-proton Overhauser enhancements and a distance geometry algorithm for determination of polypeptide conformations. Application to micelle-bound glucagon. Biochim. Biophys. Acta 667, 377–396.

    PubMed  CAS  Google Scholar 

  6. Clore, G. M., Brünger, A. T., Karplus, M., and Gronenborn, A. M. (1986) Application of molecular dynamics with interproton distance restraints to three dimensional protein structure determination: a model study of crambin. J. Mol. Biol. 191, 523–551.

    Article  PubMed  CAS  Google Scholar 

  7. Williamson, M. P., Havel, T. F., and Wüthrich, K. (1985) Solution conformation of proteinase inhibitor IIa from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J. Mol. Biol. 182, 295–315.

    Article  PubMed  CAS  Google Scholar 

  8. Zuiderweg, E. R. P., Billeter, M., Boelens, R., Scheek, R. M., Wüthrich, K., and Kaptein, R. (1984) Spatial arrangement of the three a helices in a solution structure of E. coli lac repressor DNA-binding domain. FEBS Lett. 174, 243–247.

    Article  PubMed  CAS  Google Scholar 

  9. Havel, T. F. and Wüthrich, K. (1984) A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of intramolecular 1H-1H proximities in solution. Bull. Math. Biol. 46, 673–698.

    CAS  Google Scholar 

  10. Braun, W. and Gö, N. (1985) Calculation of protein conformation by proton-proton distance constraints: a new efficient algorithm. J. Mol. Biol. 186, 611–626.

    Article  PubMed  CAS  Google Scholar 

  11. Brünger, A. T. (1992) X-PLOR, Version 3. 1. A System for X-Ray Crystallography and NMR. Yale University Press, New Haven, Connecticut.

    Google Scholar 

  12. Nilges, M. (1995) Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. J. Mol. Biol. 245, 645–660.

    Article  PubMed  CAS  Google Scholar 

  13. Nilges, M., Macias, M., O’Donoghue, S. I., and Oschkinat, H. (1997) Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from β spectrin. J. Mol. Biol. 269, 408–422.

    Article  PubMed  CAS  Google Scholar 

  14. Güntert, P., Mumenthaler, C., and Wüthrich, K. (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273. 283–298.

    Article  PubMed  Google Scholar 

  15. Güntert, P. (1998) Structure calculation of biological macromolecules from NMR data. Quart. Rev. Biophys. 31, 145–237.

    Article  Google Scholar 

  16. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Di Nola, A., and Haak, J. R. (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690.

    Article  CAS  Google Scholar 

  17. Laskowski, R. A., Ruilmay, J. A. C., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486.

    Article  PubMed  CAS  Google Scholar 

  18. Vriend, G. and Sander, C. (1993) Quality control of protein models: directional atomic contact analysis. J. Appl. Crystallogr. 26, 47–60.

    Article  CAS  Google Scholar 

  19. Kuszewski, J, Qin, J., Gronenborn, A. M., and Clore, G. M. (1995) The impact of direct refinement against 13Cαand 13Cβ chemical shifts on protein structure determination by NMR. J. Magn. Reson. Ser. B 106, 92–96.

    Article  CAS  Google Scholar 

  20. Kuszewski, J., Gronenborn, A. M., and Clore, G. M. (1995) The impact of direct refinement against proton chemical shifts on protein structure determination by NMR. J. Magn. Reson. Ser. B 107, 293–297.

    Article  CAS  Google Scholar 

  21. Kuszewski, J., Gronenborn, A. M., and Clore, G. M. (1996) A potential involving multiple proton chemical shift restraints for nonstereospecifically assigned methyl and methylene protons. J. Magn. Reson. Ser. B 112, 79–81.

    Article  CAS  Google Scholar 

  22. Brüschweiler, R., Liao, X., and Wright, P. E. (1995) Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science 268, 886–889.

    Article  PubMed  Google Scholar 

  23. Tjandra, N., Omichinski, J. G., Gronenborn, A. M., Clore, G. M., and Bax, A. (1997) Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat. Struct. Biol. 4, 732–738.

    Article  PubMed  CAS  Google Scholar 

  24. Clore, G. M. and Gronenborn, A. M. (1998) Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol. 16, 22–34.

    Article  PubMed  CAS  Google Scholar 

  25. Güntert, P., Berndt, K. D., and Wüthrich, K. (1993) The program ASNO for computer-supported collection of NOE upper distance restraints as input for protein structure determination. J. Biol. NMR 3, 601–606.

    Google Scholar 

  26. Nilges, M., Gronenborn, A. M., Brünger, A. T., and Clore, G. M. (1988) Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng. 2, 27–38.

    Article  PubMed  CAS  Google Scholar 

  27. Hanggi, G. and Braun, W. (1994) Pattern recognition and self-correcting distance geometry calculations applied to myohemerythrin. FEBS Lett. 344, 147–153.

    Article  PubMed  CAS  Google Scholar 

  28. Folmer, R. H. A., Nilges, M., Papavoine, C. H. M., Harmsen, B. J. M., Konings, R. N. H., and Hilbers, C. W. (1997) Refined structure, DNA binding studies, and dynamics of the bacteriophage Pf3 encoded single-stranded DNA binding protein. Biochemistry 36, 9120–9135.

    Article  PubMed  CAS  Google Scholar 

  29. Abe, H., Braun, W., Noguti, T., and Gö, N. (1984) Rapid calculation of first and second derivatives of conformational energy with respect to dihedral angles in proteins. General recurrent equations. Comput. Chem. 8, 239–247.

    Article  CAS  Google Scholar 

  30. Solomon, I. (1955) Relaxation processes in a system of two spins. Phys. Rev. 99, 559–565.

    Article  CAS  Google Scholar 

  31. Macura, S. and Ernst, R. R. (1980) Elucidation of cross relaxation in liquids by 2D NMR spectroscopy. Mol. Phys. 41, 95–117.

    Article  CAS  Google Scholar 

  32. Neuhaus, D. and Williamson, M. P. (1989) The Nuclear Overhauser Effect in Structural and Conformational Analysis. VCH, New York.

    Google Scholar 

  33. Jeener, J., Meier, B. H., Bachmann, P., and Ernst, R. R. (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys. 71, 4546–4553.

    Article  CAS  Google Scholar 

  34. Kumar, A., Ernst, R. R., and Wüthrich, K. (1980) A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem. Biophys. Res. Commun. 95, 1–6.

    Article  PubMed  CAS  Google Scholar 

  35. Ernst, R. R., Bodenhausen, G., and Wokaun, A. (1987) The Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon, Oxford.

    Google Scholar 

  36. Billeter, M., Braun, W., and Wüthrich, K. (1982) Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Computation of sterically allowed proton-proton distances and statistical analysis of proton-proton distances in single crystal protein conformations. J. Mol. Biol. 155, 321–346.

    Article  PubMed  CAS  Google Scholar 

  37. Güntert, P., Qian, Y. Q., Otting, G., Muller, M., Gehring, W. J., and Wüthrich, K. (1991) Structure determination of the Antp(C39?S) homeodomain from nuclear magnetic resonance data in solution using a novel strategy for the structure calculation with the programs DIANA, CALIBA, HABAS and GLOMSA. J. Mol. Biol. 217, 531–540.

    Article  PubMed  Google Scholar 

  38. Clore, G. M., Nilges, M., Sukumaran, D. K., Brünger, A. T., Karplus, M., and Gronenborn, A. M. (1986) The three-dimensional structure of α-purothionin in solution: combined use of nuclear magnetic resonance, distance geometry and restrainted molecular dynamics. EMBO J. 5, 2729–2735.

    PubMed  CAS  Google Scholar 

  39. Borgias, B. A. and James, T. L. (1989) Two-dimensional nuclear Overhauser effect: complete relaxation matrix analysis. Methods Enzymol. 176, 169–183.

    Article  PubMed  CAS  Google Scholar 

  40. Bonvin, A. M., Rullmann, J. A., Lamerichs, R. M., Boelens, R., and Kaptein, R. (1993) Ensemble iterative relaxation matrix approach: a new NMR refinement protocol applied to the solution structure of Crambin. Proteins 15, 385–400.

    Article  PubMed  CAS  Google Scholar 

  41. Wüthrich, K., Billeter, M., and Braun, W. (1983) Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance restraints with nuclear magnetic resonance. J. Mol. Biol. 169, 949–961.

    Article  PubMed  Google Scholar 

  42. Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., et al. (1998) Recommendation for the presentation of NMR structures of proteins and nucleic acids. PureAppl. Chem. 70, 117–142.

    Article  CAS  Google Scholar 

  43. Babu, Y. S., Sack, J. S., Greenhough, J. J., Bugg, C. E., Means, A. R., and Cook, W. J. (1985) Three-dimensional structure of calmodulin. Nature 315, 37–40.

    Article  PubMed  CAS  Google Scholar 

  44. Wylie, D. C. and Vanaman, T. C. (1988) Structure and evolution of the calmodulin family of calcium regulatory protein, in Calmodulin (Cohen, P. and Klee, C. B., eds.), ELSEVIER Science Publishers, Amsterdam, pp. 1–15.

    Google Scholar 

  45. Ikura, M., Clore, G. M., Gronenborn, A. M., Zhu, G., Klee, C. B., and Bax, A. (1992) Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256, 632–638.

    Article  PubMed  CAS  Google Scholar 

  46. Karplus, M. (1963) Vicinal proton coupling in nuclear magnetic resonance. J. Am. Chem.Soc. 85, 2870–2871.

    Article  CAS  Google Scholar 

  47. Wang, A. C. and Bax, A. (1996) Determination of the backbone dihedral angles ϕ in human ubiquitin from reparametrized empirical Karplus equations. J. Am. Chem. Soc. 118, 2483–2494.

    Article  CAS  Google Scholar 

  48. Wang, A. C. and Bax, A. (1995) Reparametrization of the Karplus relation for 3J(Hα-N) in peptides from uniformly 13C/15N enriched human ubiquitin. J. Am. Chem. Soc. 117, 1810–1813.

    Article  CAS  Google Scholar 

  49. De Marco, A. C., Llinas, M., and Wüthrich, K. (1978) Analysis of the 1H-NMR spectra of ferrichrome peptides. I. The non-amide protons. Biopolymers 17, 617–636.

    Article  Google Scholar 

  50. De Marco, A. C., Llinas, M., and Wüthrich, K. (1978) 1H-15N spin-spin couplings in alumichrome. Biopolymers 17, 2727–2742.

    Article  Google Scholar 

  51. Fischman, A. J., Live, D. H., Wyssbrod, H. R., Agosta, W. C., and Cowburn, D. (1980) Torsion angles in the cystine bridge of oxytocin in aqueous solution. Measurements of circumjacent vicinal couplings between 1H, 13C, and 15N. J. Am. Chem. Soc. 102, 2533–2539.

    Article  CAS  Google Scholar 

  52. Wishart, D. S. and Nip, A. M. (1998) Protein chemical shift analysis: a practical guide. Biochem. Cell Biol. 76, 153–163.

    Article  PubMed  CAS  Google Scholar 

  53. Venters, R. A., FarmerII, B. T., Fierke, C. A., and Spicer, L. D. (1996) Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N and 1H assignments of human carbonic anhydrase II. J. Mol. Biol. 264, 1101–1116.

    Article  PubMed  CAS  Google Scholar 

  54. Wishart, D. S. and Sykes, B. D. (1994) Chemical shifts as a tool for structure determination. Methods Enzymol. 239, 363–392.

    Article  PubMed  CAS  Google Scholar 

  55. Metzler, W. J., Constantine, K. L., Friedrichs, M. S., Bell, A. J., and Ernst, E. G. (1993) Characterization of the three-dimensional solution structure of human profilin: 1H, 13C and 15N assignments and global folding pattern. Biochemistry 32, 13,818–13,829.

    Article  PubMed  CAS  Google Scholar 

  56. Cornilescu, G., Delaglio, F., and Bax, A. (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biolmol. NMR 13, 289–302.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Mal, T.K., Bagby, S., Ikura, M. (2002). Protein Structure Calculation from NMR Data. In: Vogel, H.J. (eds) Calcium-Binding Protein Protocols: Volume 2: Methods and Techniques. Methods in Molecular Biology™, vol 173. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-184-1:267

Download citation

  • DOI: https://doi.org/10.1385/1-59259-184-1:267

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-689-5

  • Online ISBN: 978-1-59259-184-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics