Skip to main content

The Caseins of Milk as Calcium-Binding Proteins

  • Protocol
Calcium-Binding Protein Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 172))

Abstract

The virtual image of milk, which would be constructed by most people, is that of a creamy white fluid rich in calcium. The lubricity and taste of milk are related to this perception and are based upon three unique biological structures: the colloidal calcium-protein complexes (the casein micelles), the milk-fat globules with their limiting membrane, and the milk sugar:lactose (1). The complexity of these structures is necessitated by the fact that milk is, in essence, predominantly water. It is the accommodation of these ingredients to an aqueous environment that forms the basis for the structure of milk at the molecular level. Adaptation of milk components to their ultimate aqueous environment begins during secretion. Lipid and protein synthesis are partitioned from the start. Amino acids and their metabolic precursors are actively transported into the secretory epithelial cells and assembled into proteins on the ribosomes of the highly developed rough endoplasmic reticulum. All proteins of mammary origin have conserved leader sequences which cause insertion of the nascent proteins into the lumen of the endoplasmic reticulum (see Fig. 1). The proteins are then transported through the Golgi apparatus, as shown in Fig. 1; presumably the globular proteins of milk are folded during this period. In the Golgi apparatus, the caseins, which are the major milk proteins in most species, are phosphorylated to begin the process of calcium transport. In general, when milks that contain>2% protein are analyzed, the accompanying inorganic phosphate and calcium levels yield insoluble precipitates (apatite or brushite).

Cell physiology of lactating mammary gland. (A) A single alveolus consisting of lactating epithelial cells surrounding the lumen. (B) A typical lactating cell indicating active secretion of protein and lipid by distinct mechanisms. (Reprinted with permission from S. Patton, Sci. Am. July 1969).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farrell, H. M.,Jr. (1999) Milk synthesis and composition, in Encyclopedia of Reproduction, vol. 3. Academic, London, New York, pp. 256–263.

    Google Scholar 

  2. Bingham, E. W., Farrell, H. M.,Jr., and Basch, J. J. (1972) Phosphorylation of casein: role of the Golgi apparatus. J. Biol. Chem. 247, 8193–8194.

    CAS  PubMed  Google Scholar 

  3. Bingham, E. W., McGranaghan, M. B., Wickham, E. D., Leung, C. T., and Farrell, H. M.,Jr. (1993) Properties of [Ca2++Mg2+]-adenosine triphosphatases in the Golgi apparatus and microsomes of the lactating mammary glands of cows. J. Dairy Sci. 76, 393–400.

    Google Scholar 

  4. Farrell, H. M.,Jr., Leung, C. T., and Wickham, E. D. (1992) Distribution of ADPase activity in the lactating rat mammary gland and its possible relationship to an ATP cycle in the Golgi apparatus. Arch. Biochem. Biophys. 292, 365–375.

    Article  Google Scholar 

  5. Farrell, H. M.,Jr. and Thompson, M. P. (1988) The caseins of milk as calcium binding proteins in Calcium Binding Proteins (Thompson, M. P., ed.), CRC, Boca Raton, FL, pp. 117–137.

    Google Scholar 

  6. Kumosinski, T. F. and Farrell, H. M.,Jr. (1991) Calcium-induced associations of the caseins: thermodynamic linkage of colloidal stability of casein micelles to calcium binding. J. Protein Chem. 10, 3–16.

    Article  CAS  PubMed  Google Scholar 

  7. Holt, C. and Sawyer, L. (1988) Primary and predicted secondary structures of the caseins in relation to their biological functions. Protein Eng. 2, 251–280.

    Article  CAS  PubMed  Google Scholar 

  8. Alaimo, M. H., Kumosinski, T. F., and Farrell, H. M.,Jr. (1996) High resolution solid-state NMR of milk products. J. Magnetic Res. Anal. 2, 267–274.

    Google Scholar 

  9. Kakalis, L. T., Kumosinski, T. F., and Farrell, H. M., Jr. (1990) A multinuclear, high-resolution NMR study of bovine casein micelles and submicelles. Biophys. Chem. 38, 87–98.

    Article  CAS  PubMed  Google Scholar 

  10. Farrell, H. M.,Jr. (1988) Physical equilibria: proteins, in Fundamentals in Dairy Chemistry (Wong, N. B., ed.), 3rd ed., Van Nostrand, Reinhold,NY.

    Google Scholar 

  11. Holt, C. (1992) Structure and stability of bovine casein micelles. Adv. Protein Chem. 43, 63–151.

    Article  CAS  PubMed  Google Scholar 

  12. Whitney, R. McL. (1988) Milk proteins: composition, in Fundamentals of Dairy Chemistry (Wong, N. B., ed.), 3rd ed., Van Nostrand, Reinhold, NY.

    Google Scholar 

  13. Thompson, M. P., Gordon, W. G., Boswell, R. T., and Farrell, H. M.,Jr. (1969) Solubility, solvation and stabilization of αs1-and β-caseins. J. Dairy Sci. 52, 1166–1173.

    Article  CAS  Google Scholar 

  14. Arakawa, T. and Timasheff, S. N. (1984) Mechanisms of protein salting-in and salting-out by divalent cation salts: balance between hydration and salt binding. Biochemistry 23, 5912–5923.

    Article  CAS  PubMed  Google Scholar 

  15. Farrell, H. M.,Jr., Kumosinski, T. F., Pulaski, P., and Thompson, M. P. (1988) Calcium-induced associations of the caseins: a thermodynamic linkage approach to precipitation and resolubilization. Arch. Biochem. Biophys. 265, 146–158.

    Article  CAS  PubMed  Google Scholar 

  16. Farrell, H. M.,Jr. and Kumosinski, T. F. (1988) Modeling of calcium-induced solubility profiles of casein for biotechnology. J. Indust. Micro. 3, 61–71.

    Article  CAS  Google Scholar 

  17. Wyman, J.,Jr. (1964) Linked functions and reciprocal effects in hemoglobin: a second look. Adv. Protein Chem. 19, 223–286.

    Article  CAS  PubMed  Google Scholar 

  18. Rusling, J. F. and Kumosinski, T. F. (1996) in Nonlinear Computer Modeling of Chemical and Biochemical Data, Academic, San Diego, CA.

    Google Scholar 

  19. Farrell, H. M.,Jr., Deeney, J. T., Hild, E. K., and Kumosinski, T. E (1990) Stopped flow and steady state kinetics of NADP+: isocitrate dehydrogenase. J. Biol. Chem., 265, 17,637–17,643.

    CAS  PubMed  Google Scholar 

  20. Kumosinski, T. F., Brown, E. M. and Farrell, H. M.,Jr. (1994) Predicted energy minimized αs1-casein working model in Molecular Modeling from Virtual Tools to Real Problems (Kumosinski, T. E and Liebman, M. N., eds.), ACS Symposium Series 576. Am. Chem. Soc., Washington, DC, pp. 368–390.

    Google Scholar 

  21. Weiner, S. J., Kollman, P. A., Nguyen, D. T., and Case, D. A. (1986) Force field calculations in computational chemistry. J. Comput. Chem. 7, 200–230.

    Article  Google Scholar 

  22. Kollman, P. A. (1987) Application of force fields to molecular models. Annu. Rev. Phys. Chem. 38, 303–333.

    Article  CAS  Google Scholar 

  23. Kumosinski, T. E and Farrell, H. M.,Jr. (1994) Solubility of proteins:protein-saltwater interactions, in Protein Functionality in Food Systems (Hettiarachchy, N. S. and Zeigler, G. R., eds.), Marcel Dekker, New York, pp. 39–77.

    Google Scholar 

  24. Andersen, H. C. (1980) Molecular dynamics simulations at constant pressure and/ or temperature. J. Chem. Phys. 72, 2384–2394.

    Google Scholar 

  25. van Gunsteren, W. E and Berendsen, H. J. C. (1977) Algorithms for molecular dynamics and constraint dynamics. Mol. Phys. 34, 1311–1327.

    Article  Google Scholar 

  26. Eigel, W. N., Butler, J. E., Ernstrom, C. A., Farrell, H. M.,Jr., Harwalkar, V. R., Jenness, R., and Whitney, R. McL. (1984) Nomenclature of the proteins of cows’ milk: 5th Revision. J. Dairy Sci. 67, 1599–1631.

    Article  CAS  Google Scholar 

  27. Schmidt, D. G. (1982) Association of caseins and casein micelle structure in Developments in Dairy Chemistry (Fox, P. F., ed.), pp. 61–86. Applied Science, London, UK.

    Google Scholar 

  28. Schmidt, D. G. and Payens, T. A. J. (1976) in Surface and Colloid Science (Matijevic, E., ed.), Wiley, New York, pp. 165–229.

    Google Scholar 

  29. Noble, R. W. and Waugh, D. F. (1965) Casein micelles, formation and structure I. J. Am. Chem. Soc. 87, 2236–2245.

    Article  CAS  PubMed  Google Scholar 

  30. Waugh, D. F. and Noble, R. W. (1965) Casein micelles, formation and structure II. J. Am. Chem. Soc. 84, 2246–2257.

    Article  Google Scholar 

  31. Creamer, L. K. and Waugh, D. F. (1965) Calcium binding and precipitate solvation of Ca-αs-caseinates. J. Dairy Sci. 49, 706.

    Google Scholar 

  32. Melander, W. and Horvath C. (1977) Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch. Biochem. Biophys. 183, 200–215.

    Article  CAS  PubMed  Google Scholar 

  33. Sinanoglu, O. (1968) Solvent effects on molecular association, in Molecular Associations in Biology (Pullman, B., ed.), Academic, New York, NY, pp. 429–445.

    Google Scholar 

  34. Robinson, D. R. and Jencks, W. P. (1965) Effects of concentrated salt solutions on the activity coefficient of acetyltetraglycine ethylester. J. Am. Chem. Soc. 87, 2470–2479.

    Article  CAS  PubMed  Google Scholar 

  35. Bingham, E. W., Farrell, H. M.,Jr., and Carroll, R. J. (1972) Properties of dephosphorylated αs1-casein. Precipitation by calcium ions and micelle formation. Biochemistry., 11, 2450–2454.

    Article  CAS  PubMed  Google Scholar 

  36. Waugh, D. F., Slattery, C. W., and Creamer, L. K. (1971) Binding of calcium to caseins. Biochemistry 10, 817–823.

    Article  CAS  PubMed  Google Scholar 

  37. Cann, J. R. (1978) Measurements of protein interactions mediated by small molecules using sedimentation velocity, in Methods in Enzymology XLVIII (Hirs, C. H. W. and Timasheff, S. N., eds.), Academic Press, New York, NY, pp. 242–248.

    Google Scholar 

  38. Dickson, I. R. and Perkins, J. D. (1971) Studies on the interactions between purified bovine caseins and alkaline earth metal ions. Biochem. J. 124, 235–240.

    CAS  PubMed  Google Scholar 

  39. Kumosinski, T. F., Brown, E. M., and Farrell, H. M.,Jr. (1993) Three dimensional molecular modeling of bovine caseins: an energy-minimized β-casein structure. J. Dairy Sci. 76, 931–945.

    Article  CAS  PubMed  Google Scholar 

  40. Alaimo, M. H., Wickham, E. D., and Farrell, H. M.,Jr. (1999) Effect of selfassociation of αs1-casein and its cleavage fractions αs1-casein (136-196) and αs1-casein (1-197), on aromatic circular dichroic spectra: comparison with predicted models. Biochim. Biophys. Acta 1431, 395–409.

    Article  CAS  PubMed  Google Scholar 

  41. Ribadeau-Dumas, B. and Garnier, J. (1970) Structure of casein micelle. The accessability of subunits to various reagents. J. Dairy Res. 37, 269–278.

    Google Scholar 

  42. Tanford, C. (1967) Physical Chemistry of Macromolecules. Wiley, New York.

    Google Scholar 

  43. Pessen H., Kumosinski, T. F., Farrell, H. M.,Jr., and Brumberger, H. (1991) Tertiary and quaternary structural differences between two genetic variants of bovine casein by small-angle X-ray scattering. Arch. Biochem. Biophys. 284, 133–142.

    Article  CAS  PubMed  Google Scholar 

  44. Thurn, A., Burchard, W., and Niki, R. (1987) Studies of αs1-casein by SAXS, and static and dynamic light scattering. Colloid Polymer Sci. 265, 897–903.

    Article  CAS  Google Scholar 

  45. Curley, D. C., Kumosinski, T. F., Unruh, J. J., and Farrell, H. M.,Jr. (1998) Changes in the secondary structure of bovine casein by FTIR. J. Dairy Sci. 81, 3154–3162.

    Article  CAS  PubMed  Google Scholar 

  46. Kumosinski, T. F., Pessen, H., Farrell, H. M.,Jr., and Brumberger, H. (1988) Determination of the quaternary structural states of bovine casein by small-angle X-ray scattering. Arch. Biochem. Biophys. 266, 548–561.

    Article  CAS  PubMed  Google Scholar 

  47. Kumosinski, T. F., King, G., and Farrell, H. M., Jr. (1994) An energy-minimized casein submicelle working model. J. Prot. Chem. 13, 681–700.

    Article  CAS  Google Scholar 

  48. Kumosinski, T. F., King, G., and Farrell, H. M.,Jr. (1994) Comparison of the three-dimensional molecular models of bovine submicellar caseins with smallangle X-ray scattering. Influence of hydration. J. Prot. Chem. 13, 701–714.

    Article  CAS  Google Scholar 

  49. Richardson, T., Jiminez-Flores, R., Kumosinski, T. F., Oh, S., Brown, E. M., and Farrell, H. M.,Jr. (1992) Molecular modeling and genetic engineering of milk proteins, in Advanced Dairy Chemistry 1: Proteins (Fox, P. F., ed.), Elsevier, Essex, UK, pp. 545–578.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Farrell, H.M., Kumosinski, T.F., Malin, E.L., Brown, E.M. (2002). The Caseins of Milk as Calcium-Binding Proteins. In: Vogel, H.J. (eds) Calcium-Binding Protein Protocols. Methods in Molecular Biology™, vol 172. Humana Press. https://doi.org/10.1385/1-59259-183-3:097

Download citation

  • DOI: https://doi.org/10.1385/1-59259-183-3:097

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-688-8

  • Online ISBN: 978-1-59259-183-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics