Skip to main content

DNA-Methylation Analysis by the Bisulfite-Assisted Genomic Sequencing Method

  • Protocol
DNA Methylation Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 200))

Abstract

The postreplicative methylation of DNA at the C5 position of cytosines is found in a broad spectrum of organisms ranging from prokaryotes to human (1). In prokaryotes the major role of cytosine C5 methylation (like adenine N6 and cytosine N4 methylation) is to protect the genome against DNA degrading nucleases (restriction/modification), whereas in many eukaryotes cytosine C5 methylation (found within CpG dinucleotides) plays a pivotal role in the control of gene expression, inactivation of repetitive sequences, stability of chromosomes, and in cell transformation leading to development of cancer. The growing evidence that the cytosine methylation is also crucial in embryonic development of mammals regulating genomic imprinting, X inactivation and cell differentiation (2) has caused a demand for effective methods that would detect this modification with high sensitivity and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jost, J. P. and Saluz, H. P., eds. (1993) DNA Methylation: Molecular Biology and Biological Significance. Birkhauser Verlag, Basel, Switzerland.

    Google Scholar 

  2. Li, E. B. C. and Jaenisch, R. (1992) Targeted mutation of the DNA methyltrans-ferase gene results in embryonic lethality. Cell 69, 915–926.

    Article  PubMed  CAS  Google Scholar 

  3. Southern, E. M. (1975) Detection of specific sequences among DNA-fragments separated by gel electrophoresis. J. Mol. Biol. 98,503–517.

    Article  PubMed  CAS  Google Scholar 

  4. Singer, S. J., Robinson, M. D., Bellve, A. R., Simon, M. I., and Riggs, A. D. (1990) Measurement by quantitative PCR of changes in HPRT, PGK-1, PGK-2, APRT, MTase, and Zfy gene transcripts during mouse spermatogenesis. Nucleic Acids Res. 18, 1255–1259.

    Article  Google Scholar 

  5. Kafri, T., Ariel, M., Brandeis, M., Shemer, R., Urven, L., McCarrey, J., et al. (1992) Developmental pattern of gene specific DNA methylation of the mouse embryo and germ line. Genes Dev. 6, 705–714.

    Article  PubMed  CAS  Google Scholar 

  6. Brandeis, M., Kafri, T., Ariel, M., Chaillet, J. R., McCarrey, J., Razin, A. and Cedar, H. (1993) The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J. 12, 3669–3677.

    PubMed  CAS  Google Scholar 

  7. Maxam, A. M. and Gilbert, W. (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65,499–560.

    Article  PubMed  CAS  Google Scholar 

  8. Church, G. M. and Gilbert, W. (1984) Genomic sequencing. Proc. Natl. Acad. Sci. USA 81,1991–1995.

    Article  PubMed  CAS  Google Scholar 

  9. Pfeifer, G. P., Steigerwald, S. D., Mueller, P. R., Wold, B. and Riggs, A. D. (1989) Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246, 810–813.

    Article  PubMed  CAS  Google Scholar 

  10. Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827–1831.

    Article  PubMed  CAS  Google Scholar 

  11. Clark, S. J., Harrison, J., Paul, C. L., and Frommer, M. (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22,2990–2997.

    Article  PubMed  CAS  Google Scholar 

  12. Feil, R., Walter, J., Allen, N.D., and Kelsey, G. (1994) Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development 120, 2933–2943.

    CAS  Google Scholar 

  13. Raizis, A. M., Schmitt, F., and Jost, J. P. (1994) A bisulphite method of 5-methyl-cytosine mapping that minimises template degradation. Anal. Biochem. 226, 161–166.

    Article  Google Scholar 

  14. Olek, A., Oswald, J., and Walter, J. (1996) A modified and improved method for bisulphite based cytosine methylation analysis.Nucleic Acids Res. 24, 5064–5066.

    Article  PubMed  CAS  Google Scholar 

  15. Paulin, R., Grigg, G. W., Davey, M. W., and Piper, A. A. (1998) Urea improves efficiency of bisulphite-mediated sequencing of 5<<-methylcytosine in genomic DNA. Nucleic Acids Res. 26,5009–5010.

    Article  PubMed  CAS  Google Scholar 

  16. Gonzalgo, M. and Jones, P. A. (1997) Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 25,2529–2531.

    Article  PubMed  CAS  Google Scholar 

  17. Paul, C. L. and Clark, S. J. (1996) Cytosine methylation: quantitation by automated genomic sequencing and GENESCAN analysis. BioTechniques 21, 126–133.

    PubMed  CAS  Google Scholar 

  18. Sambrook, G., Fritsch, E. F., and Maniatis, T. (1988) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  19. Hayatsu, H., Wataya, Y., Kai, K., and Iida, S. (1970) Reaction of sodium bisulphite with uracil, cytosine, and their derivatives. Biochemistry 9,2858–2864.

    Article  PubMed  CAS  Google Scholar 

  20. Shapiro, R., Braverman, B., Louis, J. B., and Servis, R. E. (1973) Nucleic acid reactivity and conformation: reaction of cytosine and uracil with sodium bisulfite. J. Biol. Chem. 248,.4060–4064.

    PubMed  CAS  Google Scholar 

  21. McLaren, A., Gonos, E. S., Carr, T., and Goddard, J. P. (1993) The conformation of tRNA genes. Chemical modification studies. FEBS Lett. 13, 177–180.

    Article  Google Scholar 

  22. Goodchild, J., Fellner, P., and Porter, A. G. (1975) The determination of secondary structure in the polyC tract of encephalomyocarditis virus RNA with sodium bisulphite. Nucleic Acids Res. 2,797–805.

    Article  Google Scholar 

  23. Kelly, J. M., Goddard, J. P., and Maden, E. H. (1978) Evidence on the conformation of HeLa-cell 5.8S ribosomal ribonucleic acid from the reaction of specific cytidine residues with sodium bisulphite. Biochem. J. 173, 521–532.

    PubMed  CAS  Google Scholar 

  24. Wang, R. Y.-H., Gehrke, C. W., and Ehrlich, M. (1980) Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res. 8,4777–4790.

    Article  PubMed  CAS  Google Scholar 

  25. Warnecke, P. M., Stirzaker, C., Melki, J. R., Millar, D. S., Paul, C. L., and Clark, S. J. (1997) Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res. 25, 4422–4426.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Hajkova, P., El-Maarri, O., Engemann, S., Oswald, J., Olek, A., Walter, J. (2002). DNA-Methylation Analysis by the Bisulfite-Assisted Genomic Sequencing Method. In: Mills, K.I., Ramsahoye, B.H. (eds) DNA Methylation Protocols. Methods in Molecular Biology™, vol 200. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-182-5:143

Download citation

  • DOI: https://doi.org/10.1385/1-59259-182-5:143

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-618-5

  • Online ISBN: 978-1-59259-182-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics