Advertisement

Isolation of CpG Islands Using a Methyl-CpG Binding Column

Protocol
  • 906 Downloads
Part of the Methods in Molecular Biology™ book series (MIMB, volume 200)

Abstract

Vertebrate genomes are globally heavily methylated at the sequence CpG, with the exception of short patches of GC-rich DNA of between 1–2 kb in size that are free of methylation, and these are known as CpG islands (see refs. 1 and 2 for reviews). In addition to distinctive DNA characteristics, CpG islands also have an open chromatin structure in that they are hyperacetylated, lack histone H1, and have a nucleosome-free region (3). The major reason for interest in CpG islands is that they co-localize with the 5′ end of genes. Both promoter sequences and the 5′ parts of transcription units are found within CpG islands. It has been estimated that 45,000 (56%) of human genes and 37,000 (47%) of mouse genes are associated with a CpG island (4) and these include all genes that are ubiquitously expressed as well as many genes with a tissue-restricted pattern of expression (5,6).

Keywords

Calibration Protocol Test Plasmid Aprt Gene MseI Site Phenylmethylsufonyl Fluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Antequera, F. and Bird, A. (1993) CpG islands, in DNA Methylation: Molecular Biology and Biological Significance (Jost, J. P. and Saluz, H. P., eds.), Birkhauser Verlag, Basel, Switzerland, pp. 169–185.Google Scholar
  2. 2.
    Cross, S. H. and Bird, A. P. (1995) CpG islands and genes. Curr. Opin. Genet. Dev. 5, 309–314.PubMedCrossRefGoogle Scholar
  3. 3.
    Tazi, J. and Bird, A. (1990) Alternative chromatin structure at CpG islands. Cell 60, 909–920.PubMedCrossRefGoogle Scholar
  4. 4.
    Antequera, F. and Bird, A. (1993) Number of CpG islands and genes in human and mouse. Proc. Natl. Acad. Sci. USA 90, 11,995–11,999.PubMedCrossRefGoogle Scholar
  5. 5.
    Gardiner-Garden, M. and Mer, M. (1987) CpG islands in vertebrate genomes.J Mol. Biol. 196, 261–282.PubMedCrossRefGoogle Scholar
  6. 6.
    Larsen, F., Gunderson, G., Lopez, R., and Prydz, H. (1992) CpG islands as gene markers in the human genome. Genomics 13, 1095–1107.PubMedCrossRefGoogle Scholar
  7. 7.
    Riggs, A. D. and Pfeifer, G. P. (1992) X-chromosome inactivation and cell memory. Trends Genet. 8,169–174.PubMedGoogle Scholar
  8. 8.
    Antequera, F., Boyes, J., and Bird, A. (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell-lines. Cell 62, 503–514.PubMedCrossRefGoogle Scholar
  9. 9.
    Tilghman, S. M. (1999) The sins of the fathers and mothers: genomic imprinting in mamMalian development. Cell 96,185–193.PubMedCrossRefGoogle Scholar
  10. 10.
    Greger, V., Passarge, E., Höpping, W., Messmer, E., and Horsthemke, B. (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum. Genet. 83, 155–158.PubMedCrossRefGoogle Scholar
  11. 11.
    Issa, J-P. J., Ottaviano, Y. L., Celano, P., Hamilton, S. R., Davidson, N. E., and Baylin, S. B. (1994) Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nature Genet. 7, 536–540.PubMedCrossRefGoogle Scholar
  12. 12.
    Schmutte, C. and Jones, P. A. (1998) Involvement of DNA methylation in human carcinogenesis. Biol. Chem. 379, 377–388.PubMedCrossRefGoogle Scholar
  13. 13.
    Macleod, D., Charlton, J., Mullins, J., and Bird, A. (1994) Sp1 sites in the mouse Aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8, 2282–2292.PubMedCrossRefGoogle Scholar
  14. 14.
    Brandeis, M., Frank, D., Keshet, I., Siegfreid, Z., Mendelsohn, A., Nemes, A., et al. (1994) Sp1 elements protect a CpG island from de novo methylation. Nature 371,435–438.PubMedCrossRefGoogle Scholar
  15. 15.
    Tykocinski, M. L. and Max, E. E. (1984) CG dinucleotide clusters in MHC genes and in 5′ demethylated genes. Nucleic Acids Res. 12, 4385–4396.PubMedCrossRefGoogle Scholar
  16. 16.
    Stöger, R., Kubicka, P, Liu, C. G., Kafri, T., Razin, A., Cedar, H., and Barlow, D. P. (1993) Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Macleod, D., Ali, R. R., and Bird, A. (1998) An alternative promoter in the mouse major histocompatibility complex class II I-Aβ gene: implications for the origin of CpG islands. Mol. Cell Biol. 18, 4433–4443.PubMedGoogle Scholar
  18. 18.
    Wutz, A., Smrzka, O. W., Schweifer, N., Schellander, K., Wagner, E. F., and Barlow, D. P. (1998) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389, 745–749.CrossRefGoogle Scholar
  19. 19.
    Delgado, S., Gómez, M., Bird, A., and Antequera, F. (1998) Initiation of DNA replication at CpG islands in mamMalian chromosomes. EMBO J. 17, 2426–2435.PubMedCrossRefGoogle Scholar
  20. 20.
    Bickmore, W. A. and Bird A. P. (1992) Use of restriction endonucleases to detect and isolate genes from mamMalian cells. Methods Enzymol. 216, 224–245PubMedCrossRefGoogle Scholar
  21. 21.
    Cross, S. H., Charlton, J. A., Nan, X., and Bird, A. P. (1994) Purification of CpG islands using a methylated DNA binding column. Nature Genet. 6, 236–244.PubMedCrossRefGoogle Scholar
  22. 22.
    Lewis, J. D., Meehan, R. R., Henzel, W. J., Maurer-Fogy, I., Jeppesen, P., Klein, H., and Bird, A. (1992) Purification, sequence and cellular localisation of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905–914.PubMedCrossRefGoogle Scholar
  23. 23.
    Nan, X., Meehan, R. R., and Bird, A. (1993) Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res. 21, 4886–4892.PubMedCrossRefGoogle Scholar
  24. 24.
    Nan, X. Campoy, J., and Bird, A. (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88,471–481.PubMedCrossRefGoogle Scholar
  25. 25.
    Nan, X., Ng, H., Johnson, C. A., Laherty, C. D., Turner, B. M., Eisenman, R. N., and Bird, A. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389.PubMedCrossRefGoogle Scholar
  26. 26.
    Jones, P. L., Veenstra, G. J. C., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., et al. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19,187–191.PubMedCrossRefGoogle Scholar
  27. 27.
    Cross, S. H., Lee, M., Clark, V. H., Craig, J. M., Bird, A. P., and Bickmore, W. A. (1997) The chromosomal distribution of CpG islands in the mouse: evidence for genome scrambling in the rodent lineage. Genomics 40,454–461.PubMedCrossRefGoogle Scholar
  28. 28.
    McQueen, H. A., Fantes, J., Cross, S. H., Clark, V. H., Archibald, A. L., and Bird, A. P. (1996) CpG islands of chicken are concentrated on microchromosomes. Nature Genet. 12, 321–324.PubMedCrossRefGoogle Scholar
  29. 29.
    McQueen, H. A., Clark, V. H., Bird, A. P., Yerle, M., and Archibald, A. L. (1997) CpG islands of the pig. Genome Res. 7, 924–931.PubMedGoogle Scholar
  30. 30.
    McQueen, H. A., Siriaco, G., and Bird, A. P. (1998) Chicken microchromo-somes are hyperacetylated, early replicating, and gene rich. Genome Res. 8, 621–630.PubMedGoogle Scholar
  31. 31.
    Craig, J. M. and Bickmore, W. A. (1994) The distribution of CpG islands in mamMalian chromosomes. Nature Genet. 7, 376–382.PubMedCrossRefGoogle Scholar
  32. 32.
    Watanabe, T., Inoue, S., Hiroi, H., Orimo, A., Kawashima, H., and Muramatsu, M. (1998) Isolation of estrogen-responsive genes with a CpG island library. Mol. CellBiol. 18, 442–449.Google Scholar
  33. 33.
    Cross, S. H., Clark, V. H., and Bird, A. P. (1999) Isolation of CpG islands from large genomic clones. Nucleic Acids Res. 27, 2099–2107.PubMedCrossRefGoogle Scholar
  34. 34.
    Cross, S. H., Clark, V. H., SimMen, M. W., Bickmore, W. A., Maroon, H., Langford, C.., et al. (1999) Preparation and characterisation of CpG islands libraries from human chromosomes 18 and 22: landmarks for novel genes. Mam M. Gen. 11, 373–383.CrossRefGoogle Scholar
  35. 35.
    Brock, G. J. R. and Bird, A. (1997) Mosaic methylation of the repeat unit of the human ribosomal RNA genes. Hum. Mol. Genet. 6,451–456.PubMedCrossRefGoogle Scholar
  36. 36.
    Huang, T. H., Perry, M. R., and Laux, D. E. (1999) Methylation profiling of CpG islands in human breast cancer cells. Hum. Mol. Genet. 8, 459–470.PubMedCrossRefGoogle Scholar
  37. 37.
    Shiraishi, M., Chuu, Y., and Sekiya, T. (1999) Isolation of DNA fragments associated with methylated CpG islands in human adenocarcinomas of the lung using 130 a methylated DNA binding column and denaturing gradient gel electrophoresis. Proc. Natl. Acad. Sci. USA 96, 2913–2918.PubMedCrossRefGoogle Scholar
  38. 38.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (eds.) (1989) Molecular Cloning. A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  39. 39.
    Studier, E W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89.PubMedCrossRefGoogle Scholar
  40. 40.
    Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  41. 41.
    John, R. M. and Cross, S. H. (1997) Gene detection by the identification of CpG islands, in Genome Analysis: A Laboratory Manual, vol. 2 Detecting Genes(Birren, B., Green, E. D., Klapholz, S., Myers, R. M., and Roskams, J., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 217–285.Google Scholar
  42. 42.
    Sanford, J., Chapman, V. M., and Rossant, J. (1985) DNA methylation in extraembryonic lineages of mamMals. Trends Genet. 1, 89–93.CrossRefGoogle Scholar
  43. 43.
    Valdes J. M., Tagle, D. A., and Collins E S. (1994) Island rescue PCR: a rapid and efficient method for isolating transcribed sequences from yeast artificial chromosomes and cosmids. Proc. Nat. Acad. Sci. USA 91, 5377–5381.PubMedCrossRefGoogle Scholar
  44. 44.
    Parimoo, S., Patanjali, S. R., Shukla, H., Chaplin, D. D., and Weissman, S. M. (1991) cDNA selection: efficient PCR approach for the selection of cDNAs encoded in large chromosomal DNA fragments. Proc. Natl. Acad. Sci. USA 88, 9623–9627.PubMedCrossRefGoogle Scholar
  45. 45.
    Lovett, M., Kere, J., and Hinton, L. M. (1991) Direct selection: a method for the isolation of cDNAs encoded by large genomic regions. Proc. Natl. Acad. Sci. USA 88, 9628–9632.PubMedCrossRefGoogle Scholar
  46. 46.
    Bird, A. P. and Taggart, M. H. (1980) Variable patterns of total DNA and rDNA methylation in animals. Nucleic Acids Res. 8,1485–1497.PubMedCrossRefGoogle Scholar
  47. 47.
    Buckler, A. J., Chang, D. D., Graw, S. L., Brook, J. D., Haber, D. A., Sharp P. A., and Housman, D. E. (1991) Exon amplification: A strategy to isolate mamMalian genes based on RNA splicing. Proc. Natl. Acad. Sci. USA 88, 4005–4009.PubMedCrossRefGoogle Scholar
  48. 48.
    Ewing, B., and Green, P. (2000) Analysis of expressed sequence tags indicates 35,000 human genes. Nat. Genet. 25, 232–234.PubMedCrossRefGoogle Scholar
  49. 49.
    International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  1. 1.MRC Human Genetics UnitWestern General HospitalEdinburghUK

Personalised recommendations