Skip to main content

Biomedical and Agricultural Applications of Animal Transgenesis

  • Protocol
  • 2194 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 180))

Abstract

In 1980, Gordon et al. (1) showed that DNA injected into the pronuclei of single-cell embryos could be incorporated, expressed, and transmitted to the offspring of transgenic mice. Since then, pronuclear injection has become a widely used and invaluable tool for the study of mammalian gene function. The same technique has also been used to generate transgenic livestock (2); however, the proportion of injected and transferred embryos giving rise to transgenic animals is greatly reduced relative to mice (1 to 2% vs 10-25%). Two general disadvantages of pronuclear injection apply equally to all species: unpredictable effects of site of incorporation and transgene copy number on gene expression lead to a requirement for testing multiple lines to ensure appropriate transgene expression, and the technique is restricted to the addition of genetic material.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gordon, J. W., Scargos, G. A., Plotkin, D. J., Barbosa, J. A., and Ruddle, F. R. (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. USA 77, 7380–7384.

    Article  PubMed  CAS  Google Scholar 

  2. Hammer, R. E., Pursel, V. G., Rexroad, C. E., Wall, R., Bolt, J., Ebert, D. J., Palmiter, R. D., and Brinster, R. L. (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315,680–683.

    Article  PubMed  CAS  Google Scholar 

  3. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluri-potential cells from mouse embryos. Nature 292,154–156.

    Article  PubMed  CAS  Google Scholar 

  4. Martin, G. (1981) Isolation of a pluripotential cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. PNAS 78,7634–7638.

    Article  PubMed  CAS  Google Scholar 

  5. Wilmut, I., Schneike, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. S. (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385,810–813.

    Article  PubMed  CAS  Google Scholar 

  6. Campbell, K. H. S., McWhir, J., Ritchie, W. A., and Wilmut, I. (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380,64–66.

    Article  PubMed  CAS  Google Scholar 

  7. Schneike, A. E., Kind, A. J., Ritchie, W. A., Mycock, K., Scott, A. R., Ritchie, M., Wilmut, I., Colman, A., and Campbell, K. H. S. (1998) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278,2130–2133.

    Article  Google Scholar 

  8. Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A., and Kucherlapati, R. S. (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317,230–234.

    Article  PubMed  CAS  Google Scholar 

  9. Shesely, E. G., Kim, H.S., Shehee, W. R., Papayannopoulou, T., Smithies, O., and Popovich, B. W. (1991) Correction of a human bs-globin gene by gene targeting. PNAS 88,4294–4298.

    Article  PubMed  CAS  Google Scholar 

  10. Williams, S. R., Ousley, F. C., Vitez, L. J., and DuBridge, R. B. (1994) Rapid detection of homologous recombinants in nontransformed human cells. PNAS 91,11,943–11,947.

    Article  PubMed  CAS  Google Scholar 

  11. Arbones, M. L., Austin, H. A., Capon, D. J., and Greenburg, G. (1994) Gene targeting in normal somatic cells: inactivation of the interferon-gamma receptor in myoblasts. Nat. Genet. 6, 90–97.

    Article  PubMed  CAS  Google Scholar 

  12. Scheerer, J. B. and Adair, G. M. (1994) Homology dependence of targeted recombination at the Chinese hamster APRT locus. Mol. Cell. Biol. 14, 6663–6673.

    PubMed  CAS  Google Scholar 

  13. Itzhaki, J. E., Gilbert, C. S., and Porter, A. C. (1997) Construction by gene targeting in human cells of a “conditional” CDC2 mutant that re-replicates its DNA. Nat. Genet. 15, 258–265.

    Article  PubMed  CAS  Google Scholar 

  14. Doetschman, T. C., Williams, P., and Maeda, N. (1988) Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev. Biol. 127,224–227.

    Article  PubMed  CAS  Google Scholar 

  15. Sukoyan, M. A., Vatolin, S. Y., Golubitsa, A. N., Zhelezova, A. N., Zemenova, L. A., and Serov, O. L. (1993) Embryonic stem cells derived from morula, inner cell mass and blastocysts of mink: comparison of their pluripotencies. Mol. Reprod. Dev. 36, 148–158.

    Article  PubMed  CAS  Google Scholar 

  16. Iannaccone, P. M., Taborn, G. U., Garton, R. L., Caplice, M. D., and Brenin, D. R. (1994) Pluripotent embryonic stem cells from the rat are capable of producing chimaeras. Dev. Biol. 163,288–292.

    Article  PubMed  CAS  Google Scholar 

  17. Pain, B., Clark, M. E., Shen, M., Nakazawa, H., Sakurai, M., Samurut, J., and Etches, R. J. (1996) Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic properties. Development 122, 2339–2348.

    PubMed  CAS  Google Scholar 

  18. Piedrahita, J. A., Anderson, G. B., and Bon Durant, R. H. (1990) On the isolation of embryonic stem cells: comparative behaviour of murine, porcine and ovine embryos. Theriogenology 34, 879–901.

    Article  PubMed  CAS  Google Scholar 

  19. Tsuchiya, Y., Raasch, G. A., Brandes, T. L., Mizoshita, K., and Youngs, C. R. (1994) Isolation of ICM-derived cell colonies from sheep blastocysts. Theriogenology 41, 321.

    Article  Google Scholar 

  20. Notorianni, E., Galli, C., Laurie, S., Moor, R. M., and Evans, M. J. (1991) Derivation of pluripotent embryonic cell lines from the pig and sheep. J. Reprod. Fertil. 43, 255–260.

    Google Scholar 

  21. Sims, M. M. and First, N. L. (1993) Production of fetuses from totipotent cultured bovine inner cell mass cells. Theriogenology 39, 313.

    Article  Google Scholar 

  22. Tsuchiya, Y., Raasch, G. A., Brandes, T. L., Mizoshita, K., and Youngs, C. R. (1994) Isolation of ICM-derived cell colonies from sheep blastocysts. Theriogenology 41, 321.

    Article  Google Scholar 

  23. Stice, S., Strelchenko, N. S., Betthauser, J., Scott, B., Jurgella, G., Jackson, J., David, V., Keefer, C., and Matthews, L. (1994) Bovine pluripotent embryonic cells contribute to nuclear transfer and chimaeric fetuses. Theriogenology 41, 304.

    Article  Google Scholar 

  24. Stice, S. L., Strelchenko, N. S., Keefer, C. L., and Matthew, L. (1996) Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biol. Reprod. 54, 100–110.

    Article  PubMed  CAS  Google Scholar 

  25. Strelchenko, N. and Stice, S. (1994) Bovine embryonic pluripotent cell lines derived from morula stage embryos. Theriogenology 41, 304.

    Article  Google Scholar 

  26. Talbot, N. C., Powell, A. M., Nel, N. D., Pursel, V. G., and Rexroad, C. E. Jr. (1993) Culturing the epiblast cells of the pig blastocyst. In Vitro Cell Dev. Biol. 29, 543–554.

    Article  Google Scholar 

  27. Gerfen, R. W. and Wheeler, M. B. (1995) Isolation of embryonic cell lines from porcine blastocysts. Anim. Biotech. 6, 1–14.

    Article  Google Scholar 

  28. Thomson, J. A., Kalishman, J., Golos, T. G., Durning, M., Harris, C. P., Becker, R. A., and Hearn, J. P. (1995) Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA 92, 7844–7848.

    Article  PubMed  CAS  Google Scholar 

  29. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones J. M. (1998) Embryonic cell lines derived from human blastocysts. Science 282 (5391), 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  30. Stice, S. L. (1998) Opportunities and challenges in domestic animal embryonic stem cell research, in Animal Breeding Technology for the 21st Century (Clark, A. J., ed.), Harwood Academic, Amsterdam, pp. 63–73.

    Google Scholar 

  31. Pursel, V. G., Hammer, R. E., Bolt, D. J., Palmiter, R. D., and Brinster, R. L. (1990) Genetic engineering of swine: integration, expression and germline transmission of growth related genes. J. Reprod. Fertil. Suppl. 41, 77–87.

    PubMed  CAS  Google Scholar 

  32. Simons, J. P., Wilmut, I., Clark, A. J., Archibald, A. L., and Bishop, J. O. (1988) Gene transfer into sheep. Bio/Technology 6, 179.

    Article  CAS  Google Scholar 

  33. Lee, T. K., Bangalore, N., Velander, W., Drohan, W. N., and Lubon, H. (1996) Activation of recombinant human protein C. Thrombos. Res. 82 (3), 225–234.

    Article  CAS  Google Scholar 

  34. Colman, A. (1997) Transgenic production of specialty nutritionals, in IBC Conference Proceedings on Transgenic Nutraceuticals.

    Google Scholar 

  35. Young, M. W., Okita, W. B., Brown, E. M., and Curling, J. M. (1997) Production of biopharmaceutical proteins in the milk of transgenic dairy animals. Biopharm-Technol. Business Biopharm. 10 (6) 34–38.

    Google Scholar 

  36. Wilmut, I. and Whitelaw, C. B. A. (1994) Strategies for production of pharmaceutical proteins in milk. Reprod. Fertil. Dev. 6, 625–630.

    Article  PubMed  CAS  Google Scholar 

  37. Ziomek, C. A. (1998) Commercialisation of proteins produced in the mammary gland. Theriogenology 49, 139–144.

    Article  PubMed  CAS  Google Scholar 

  38. Houdebine, L. M. (1994) Production of pharmaceutical proteins from transgenic animals. J. Biotechnol. 34, 269.

    Article  PubMed  CAS  Google Scholar 

  39. Kerr, D. E., Liang, F. X., Bondioli, K. R., Zhao, H. P., Kreibich, G., Wall, R. J., and Sun, T. T. (1998) The bladder as a bioreactor: urothelium production and secretion of growth hormone into urine. Nat. Bio/Technol. 16 (1), 75-79.

    Google Scholar 

  40. Sharma, A., Martin, M. J., Okabe, J. F., Truglio, R. A., Dhanjal, N. P., Logan, J. S., and Kumar, R. (1994) An isologous porcine promoter permits high level expression of human hemoglobin in transgenic swine. Bio/Technology 12, 55–59.

    Article  PubMed  CAS  Google Scholar 

  41. Swanson, M. E., Martin, M. J., O’Donnell, J. K., Hoover, K., Lago, W., Huntress, V., Parsons, C. T., Pinkert, C. A., and Logan, J. S. (1992) Production of functional human haemoglobin in transgenic swine. Bio/Technology 10,557–559.

    Article  PubMed  CAS  Google Scholar 

  42. Archibald, A. L., McClenaghan, M., Hornsey, V., Simons, J. P., and Clark, A. J. (1990) High-level expression of biologically active human α1 antitrypsin in the milk of transgenic mice. PNAS 87, 5178–5182.

    Article  PubMed  CAS  Google Scholar 

  43. Clark, A. J. (1998) The mammary gland as a bioreactor: expression processing and production of recombinant proteins. J. Mammary Gland Biol. Neoplas. 3 (3), 337–350.

    Article  CAS  Google Scholar 

  44. Denman, J., Hayes, M., O’Day, C., Edmunds, T., Bartlett, C., Hirani, S., Ebert, K. M., Gordon, K., and McPherson, J. M. (1991) Transgenic expression of a variant of human tissue-type plasminogen activator in goat milk: purification and characterisation of the recombinant enzyme. Bio/Technology (NY) 9,839–843.

    Article  CAS  Google Scholar 

  45. Velander, W. H., Johnson, J. L., Page, R. L., et al. (1992) High level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C. PNAS 89,12,003–12,007.

    Article  PubMed  CAS  Google Scholar 

  46. Drews, R., Paleyanda, R. K., Lee, T. K., Chang, R. R., Rehemtulla, A., Kaufman, R. J., Drohan, W. N., and Lubon, H. (1995) Proteolytic maturation of protein C upon engineering the mouse mammary gland to express furin. PNAS 92,10,462.

    Article  PubMed  CAS  Google Scholar 

  47. Carver, A., Wright, G., Cottom, D., et al. (1992) Expression of human α1 antit-rypsin in transgenic sheep. Cytotechnology 9,77–84.

    Article  PubMed  CAS  Google Scholar 

  48. Niemann, H., Halter, R., Espanion, G., Wrenzycki, C., Herrmann, D., Lemme, E., Carnwath, J. W., and Paul, D. (1996) Expression of human blood clotting factor VIII (FVIII) constructs in the mammary gland of transgenic mice and sheep. J. Anim. Breed. Genet. 113(45), 437–444.

    Article  Google Scholar 

  49. Paleyanda, R. K., Velander, W. H., Lee, T. K., Scandella, D. H., Gwazdauskas, F. C., Knight, J. W., Hoyer, L. W., Drohan, W. N., and Lubon, H. (1997) Transgenic pigs produce functional human factor VIII in milk. Nat. Biotech. 15 (10), 971–975.

    Article  CAS  Google Scholar 

  50. Clark, A. J., Bessos, H., Bishop, J. O., Brown, P., Harris, S., Lathe, R., McClenaghan, M., Prowsae, C., Simons, J. P., Whitelaw, C. B. A., and Wilmut, I. (1989) Expression of human anti-hemophilic factor IX in the milk of transgenic sheep. Bio/Technology (NY) 7,487–492.

    Article  CAS  Google Scholar 

  51. Prunkard, D., Cottingham, I., Garner, I., Lasser, G., Bishop, P., and Foster, D. (1997) Expression of recombinant human fibrinogen in the milk of transgenic sheep. Thromb. Haemost. PS158.

    Google Scholar 

  52. VanCott, K. E., Lubon, H., Russell, C. G., Butler, S. P., Gwazdauskas, F. C., Knight, J., Drohan, W. N., Velander, W. H. (1997) Phenotypic and genotypic stability of multiple lines of transgenic pigs expressing recombinant human protein C. Transgen. Res. 6 (3), 203–212.

    Article  CAS  Google Scholar 

  53. Shaw-White, J. R., Denko, N., Albers, L., Doetschman, T. C., and Stringer, J. R. (1993) Expression of the lacZ gene targeted to the HPRT locus in embryonic stem cells and their derivatives. Transgen. Res. 2,1–13.

    Article  CAS  Google Scholar 

  54. Detloff, P. J., Lewis, J., John, S. W. M., Shehee, W. R., Lengenbach, R., Maeda, N., and Smithies, O. (1994) Deletion and replacement of the mouse β-globin genes by a “plug and socket” repeated targeting strategy. Mol. Cell. Biol. 14, 6936–6943.

    PubMed  CAS  Google Scholar 

  55. Stacey, A., Schnieke, A., McWhir, J., Cooper, J., Colman, A., and Melton, D. W. (1994) Use of double replacement gene targeting to replace the murine alpha lactalbumin gene with its human counterpart in embryonic stem cells and mice. Mol. Cell. Biol. 14 (2), 1009–1016.

    PubMed  CAS  Google Scholar 

  56. Bronson, S. K., Plaehn, E. G., Kluckman, K. D., Hagaman, J. R., Maeda, N., and Smithies, O. (1996) Single copy transgenic mice with chosen site integration. PNAS 93, 9067–9072.

    Article  PubMed  CAS  Google Scholar 

  57. Wallace, H., Ansell, R., Clark, A. J., and McWhir, J. (2000) Pre-selection of integration sites imparts repeatable transgene expression. Nucleic Acids Res. 28, 1455–1464.

    Article  PubMed  CAS  Google Scholar 

  58. Krimpenfort, P., Rademakers, A., Eyestone, W., van der Schans, A., van den Broek, S., Kooiman, P., Kootwijk, E., Platenburg, G., Pieper, F., Srijker, R., and De Boer, H. (1991) Generation of transgenic dairy cattle using “in vitro” embryo production. Bio/Technology 9, 844–847.

    Article  PubMed  CAS  Google Scholar 

  59. Wall, R. J., Kerr, D. E., and Bondoli, K. R. (1997) Transgenic dairy cattle: genetic engineering on a grand scale. J. Dairy Sci. 80, 2213–2224.

    Article  PubMed  CAS  Google Scholar 

  60. Clark, A. J. (1996) Genetic modification of milk proteins. Am. J. Clin. Nutr. 63, 633S–638S.

    PubMed  CAS  Google Scholar 

  61. Garner, I. and Colman, A. (1998) Therapeutic protein from livestock, in Animal Breeding: Technology for the 21st Century (Clark, A. J., ed.), Harwood Academic, Amsterdam, pp. 215–227.

    Google Scholar 

  62. Karatzas, C. N. and Turner, J. D. (1997) Toward altering milk composition by genetic manipulation: current status and challenges. J. Dairy Sci. 80,2225–2232.

    Article  PubMed  CAS  Google Scholar 

  63. Jiminez-Flores, R. and Richardson, T. (1988) Genetic engineering of the caseins to modify the behaviour of milk during processing: a review. J. Dairy Sci. 71, 2640–2654.

    Article  Google Scholar 

  64. Clarke, A. R. and McWhir, J. (1995) Transgenic models of disease, in Progress in Pathology, Volume 2 (Kirkham, N. and Lemoine, N. R., eds.), Churchill Livingstone, Edinburgh, pp. 227–246.

    Google Scholar 

  65. Joyner, A. (1993) Gene Targeting: A Practical Approach, Oxford University Press, NY.

    Google Scholar 

  66. Snouwaert, J. N., Brigman, K. K., Latour, A. M., Malouf, N. N., Boucher, R. C., Smithies, O., and Koller, B. H. (1992) An animal model for cystic fibrosis made by gene targeting. Science 257, 1083–1088.

    Article  PubMed  CAS  Google Scholar 

  67. Dunnett, S. B., Sirinathsinghihji, D. J. S., Heaven, R., Rogers, D. C., and Kuehn, M. R. (1989) Monoamine deficiency in a transgenic (HPRT-) mouse model of Lesch-Nyhan syndrome. Brain Res. 501, 401–416.

    Article  PubMed  CAS  Google Scholar 

  68. Finger, S., Heaven, R. P., Sirinathsinghji, D. J. S., Kuehn, M. R., and Dunnett, S. B. (1988) Behavioural and neurochemical evaluation of a transgenic mouse model of Lesch-Nyhan syndrome.

    Google Scholar 

  69. Petters, R. L. (1994) Transgenic livestock as genetic models of human disease. Reprod. Fertil. Dev. 6, 643–645.

    Article  PubMed  CAS  Google Scholar 

  70. Harris, A. (1997) Towards an ovine model of cystic fibrosis. Hum. Mol. Genet. 6 (3), 2191–2193.

    Article  PubMed  CAS  Google Scholar 

  71. Tebbutt, S. J., Harris, A., and Hill, D. F. (1996) An ovine CFTR variant as a putative cystic fibrosis causing mutation. J. Med. Genet. 33 (7), 623, 624.

    Article  PubMed  Google Scholar 

  72. Tobler, I., Gaus, S. E., Deboer, T., Achermann, P., Fischer, M., Rulicke, T., Moser, M., Oesch, B., McBride, P. A., and Manson, J. C. (1996) Altered circa-dian activity rhythms and sleep in mice devoid of prion protein. Nature 380 (18), 639–642.

    Article  PubMed  CAS  Google Scholar 

  73. Bueler, H., Fischer, M., Lang, Y., Bluethmann, H., Lipp, H.-P., DeArmond, S. J., Prusiner, S. B., Aguet, M., and Weissmann, C. (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582.

    Article  PubMed  CAS  Google Scholar 

  74. Evans, R. W., Orians, C. E., and Asher, N. L. (1992) The potential supply of donor organs: an assessment of the efficiency of organ procurement efforts in the United States. JAMA 267, 239–246.

    Article  PubMed  CAS  Google Scholar 

  75. White, D. and Langford, D. (1998) Xenografts from livestock, in Animal Breeding Technology for the 21st Century (Clark, A. J., ed.), Harwood Academic, Amsterdam, pp. 229–242.

    Google Scholar 

  76. Langford, G. A., Yannoutsos, N., Cozzi, N., Lancaster, E., Elsome, R., Chen, K., Richards, P., and White, D. J. (1994) Production of pigs transgenic for human decay accelerating factor. Transplant. Proc. 26, 1400–1401.

    PubMed  CAS  Google Scholar 

  77. Fodor, W. L., Williams, B. L., Matis, L. A., Madri, J. A., Rollins, S. A., Knoght, J. W., Velander, W., and Squinto, S. P. (1994) Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xeno-geneic hyperacute rejection. PNAS 91, 11,153–11,157.

    Article  PubMed  CAS  Google Scholar 

  78. Sandrin, M. S., Fodor, W. I., Mouhtours, E., Osman, N., Cohney, S., and Rollins, S. A. (1995) Enzymatic remodelling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytolysis. Nat. Med. 12, 1261–1265.

    Article  Google Scholar 

  79. Koike, C., Kannagi, T., Muramatsu, T., Yokoyama, I., and Takagi, H. (1996) Converting (α) Gal epitope of pig into H antigen. Transplant. Proc. 28, 553.

    PubMed  CAS  Google Scholar 

  80. Osman, N., McKenzie, I. F. C., Ostenreid, K., Ioannou, Y. A., Desnick, R. J., and Sandrin, M. S. (1997) Combined transgenic expression of α-galactosidase and α-1,2-fucosyltransferase leads to optimal reduction in the major zenoepitope Galα(1,3)Gal. PNAS 94, 14,677–14,682.

    Article  PubMed  CAS  Google Scholar 

  81. Patience, C., Takeuchi, Y., and Weiss, R. A. (1997) Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 3, 282–286.

    Article  PubMed  CAS  Google Scholar 

  82. Clark, A. J., Simons, J. P., and Wilmut, I. (1992) Germline manipulation: applications in agriculture and biotechnology, in Transgenic Mice in Biology and Medicine (Grosveld, F. and Kollias, G., eds.), Academic, London, pp. 247–270.

    Google Scholar 

  83. Pursel, V. G. (1998) Modification of production traits, in Animal breeding: Technology for the 21st Century (Clark, A. J., ed.), Harwood Academic, Amsterdam, pp. 183–200.

    Google Scholar 

  84. Bawden, C. S., Sivaprasad, A. V., Verma, P. J., Walker, S. K., and Rogers, G. E. (1995) Expression of bacterial cysteine biosynthesis genes in transgenic mice and sheep: toward a new in vivo amino acid biosynthesis pathway and improved wool growth. Transgenic Res. 4, 87–104.

    Article  PubMed  CAS  Google Scholar 

  85. Powell, B. C., Walker, S. K., Bawden, C. S., Sivaprasad, A. V., and Roger, G. E. (1994) Transgenic sheep and wool growth: possibilities and current status. Reprod. Fertil. Dev. 6, 615–623.

    Article  PubMed  CAS  Google Scholar 

  86. Damak, S., Su, H.-Y., Jay, N. P., and Bullock, D. W. (1996) Improved wool production in transgenic sheep expressing insulin-like growth factor 1. Bio/Tech-nology 14, 185–188.

    Article  CAS  Google Scholar 

  87. Muller, M., Brenig, B., Winnacker, E.-L., and Brem, G. (1992) Transgenic pigs carrying cDNA copies encoding the murine Mx1 protein which confers resistance to influenza virus infection. Gene 121, 263–270.

    Article  PubMed  CAS  Google Scholar 

  88. Eyestone, W. H. (1994) Challenges and progress in the production of transgenic cattle. Reprod. Fertil. Dev. 6, 647–652.

    Article  PubMed  CAS  Google Scholar 

  89. Eyestone, W. H. (1999) Production and breeding of transgenic cattle using in vitro embryo production technology. Theriogenology 51 (2), 509–517.

    Article  PubMed  CAS  Google Scholar 

  90. Takada, T. T., Lida, K., Awaji, T., Itoh, K., Takahashi, R., Shibui, A., Yoshida, K., Sugano, S., and Tsujimoto, G. (1997) Selective production of transgenic mice using green fluorescent protein as a marker. Nat. Biotechnol. 15, 458–461.

    Article  PubMed  CAS  Google Scholar 

  91. Lewis-Williams, J., Sun, Y., Han, Y., Ziomek, C., Denniston, R. S., Echelard, Y., and Godke, R. A. (1997) Birth of successfully identified transgenic goats using preimplantation stage embryos biopsied for FISH. Theriogenology 47,226.

    Article  Google Scholar 

  92. Bonifer, C., Yannoutsos, N., Kruger, G., Grosveld, F., and Sippel, A. E. (1994) Dissection of the locus control function located on the chicken lysozyme gene domain in transgenic mice. Nucleic Acids Res. 22, 4202–4210.

    Article  PubMed  CAS  Google Scholar 

  93. Grosveld, F., Van Assendelft, G. B., Greaves, D. R., and Kollias, G. (1987) Position independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51, 975–985.

    Article  PubMed  CAS  Google Scholar 

  94. Clark, A. J., Couper, A., Wallace, R., Wright, G., and Simons, J. P. (1992) Rescuing transgene expression by co-integration. Bio/Technology 10, 1450–1454.

    Article  PubMed  CAS  Google Scholar 

  95. Fu, Y., Wang, Y., and Evans, S. M. (1998) Viral sequences enable efficient and tissue-specific expression of transgenes in Xenopus. Nat. Biotechnol. 16,253–257.

    Article  PubMed  CAS  Google Scholar 

  96. Fukushige, S. and Sauer, B. (1992) Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. PNAS 89, 7905–7909.

    Article  PubMed  CAS  Google Scholar 

  97. Kolb, A. F. and Siddel, S. G. (1997) Genomic targeting of a bicistronic DNA fragment by Cre-mediated site-specific recombination. Gene 209, 209–216.

    Article  Google Scholar 

  98. Rucker, E. B. and Piedrahita, J. A. (1997) Cre-mediated recombination at the murine whey acidic protein (nWAP) locus. Mol. Reprod. Dev. 48, 324–331.

    Article  PubMed  CAS  Google Scholar 

  99. Kolb, A. F., Ansell, R., McWhir, J., and Siddel, S. G. (1999) Insertion of a foreign gene into the β-casein locus by Cre-mediated site-specific recombination. Gene 227, 21–31.

    Article  PubMed  CAS  Google Scholar 

  100. Bishop, S. C. and Woolliams, J. A. (1991) Utilization of the sex-determining region Y gene in beef cattle breeding schemes. Anim. Prod. 53, 157–164.

    Article  Google Scholar 

  101. Gibson, J. (1998) Breeding genetically manipulated traits, in Animal Breeding: Technology for the 21st Century (Clark, A. J., ed.), Harwood Academic, Amsterdam.

    Google Scholar 

  102. Smith, T. P. L., Lopez-Corrales, N. L., Kappes, S. M., and Sonstegard, T. S. (1997) Myostatin maps to the interval containing the bos mh locus. Mamm. Genome 8, 742–744.

    Article  PubMed  CAS  Google Scholar 

  103. Kappes, S. M. (1999) Utilization of gene mapping information in livestock animals. Theriogenology 51, 135–147.

    Article  PubMed  CAS  Google Scholar 

  104. Archibald, A. (1998) Comparative gene mapping-the livestock perspective, in Animal Breeding: Technology for the 21st Century (Clark, A. J., ed.), Harwood Academic, Amsterdam, pp. 137–164.

    Google Scholar 

  105. Klungland, H., Vage, D. I., Gomex-Raya, L., Adalsteinsson, S., and Lien, S. (1995) The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat colour determination. Mamm. Genome 6,636–639.

    Article  PubMed  CAS  Google Scholar 

  106. Johansson Moller, M., Chaudhary, R., Hellmen, E., Chowdahary, B., and Andersson, L. (1996) Pigs with the dominant white coat colour phenotype carry a duplication of the KIT gene encoding the mast/stem cell growth factor receptor. Mamm. Genome 7, 822–830.

    Article  PubMed  CAS  Google Scholar 

  107. Fujii, J., Otsu, K., Zorzato, F., De Leon, S., Khanna, V. K., Weiler, J. E., O’Brien, P. J., and MacLennan, D. H. (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253 448–451.

    Article  PubMed  CAS  Google Scholar 

  108. Potcnik, A. J., Nielson, P. J., and Eichmann, K. (1994) In vitro generation of lymphoid precursors from embryonic stem cells. EMBO J. 13 (22), 5274–5283.

    Google Scholar 

  109. Bain, G., Kitchens, D., Yao, M., Huettner, J. E., and Gottlieb, D. I. (1995) Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357.

    Article  PubMed  CAS  Google Scholar 

  110. Rohwedel, J., Maltsev, V., Bober, E., Arnold, H.-H., Hescheler, J., and Wobus, A. M. (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 164, 87–101.

    Article  PubMed  CAS  Google Scholar 

  111. Tada, M., Tada, T., Lefebvre, L., Barton, S. C., and Surani, M. A. (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16 (21), 6510–6520.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

McWhir, J. (2002). Biomedical and Agricultural Applications of Animal Transgenesis. In: Clarke, A.R. (eds) Transgenesis Techniques. Methods in Molecular Biology, vol 180. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-178-7:003

Download citation

  • DOI: https://doi.org/10.1385/1-59259-178-7:003

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-696-3

  • Online ISBN: 978-1-59259-178-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics