Skip to main content

QTL Analysis in Livestock

  • Protocol
Quantitative Trait Loci

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 195))

Abstract

In a recent issue ofScience, Lander and Weinberg (1) stated that “without doubt, the greatest achievement in biology over the past millennium has been the elucidation of the mechanism of heredity” .The genetic dissection of quantitative phenotypes into Mendelian-like components, or quantitative trait loci (QTL) analysis, has provided significant insight into how complex traits are regulated and controlled. In combination with the new tools of genomics, QTL analysis to maladies such as obesity, hypertension, and diabetes and that contribute to behavioral phenotypes. This will not only yield informative diagnostics but may also lead to new therapies and potential cures in the future. In addition, we will begin to understand interactions between genes and the environment and between genes and other genes (epistasis), which, together, will play critical roles in implementing pharmacogenomic paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander E. S. and Weinberg R. A. (2000) Genomics: journey to the center of biology. Science 287, 1777–1782.

    Article  PubMed  CAS  Google Scholar 

  2. Soller M. (1990) Genetic mapping of the bovine genome using deoxyribonucleic acid-level markers to identify loci affecting quantitative traits of economic importance. J. Dairy Sci. 73, 2628–2646.

    Article  CAS  Google Scholar 

  3. Soller M. (1991) Mapping quantitative trait loci affecting traits of economic importance in animal populations using molecular markers, in Gene-Mapping Techniques and Applications (Schook L. B., Lewin H. A., and McLaren D. G., eds.), Marcel Dekker, New York, pp. 21–49.

    Google Scholar 

  4. Weller J. I. and Ron M. (1994) Detection and mapping quantitative trait loci in segregating populations: theory and experimental results, in Proc. 5th World Congress on Genetics Applied to Livestock Production 21, pp. 213–220.

    Google Scholar 

  5. Bovenhuis H., Van Arendonk J. A., Davis G., Elsen J.-M., Haley C. S., Hill W. G., et al. (1997) Detection and mapping of quantitative trait loci in farm animals. Livestock Prod. Sci. 52, 135–144.

    Article  Google Scholar 

  6. Hoeschele I., Uimari P., Grignola FE., Zhang Q., and Gage K. M. (1997) Advances in statistical methods to map qu. antitative trait loci in outbred populations. Genetics 147, 1445–1457.

    PubMed  CAS  Google Scholar 

  7. Lynch M. and Walsh B. (1997) Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  8. Georges M. (1998) Mapping genes underlying production traits in livestock, in Animal Breeding Technology for the 21st Century (Clark A. J., ed.), Harwood Academic, Amsterdam, pp. 77–101.

    Google Scholar 

  9. Taylor J. F. and Rocha J. L. (1998) QTL analysis under linkage equilibrium, in Molecular Dissection of Complex Traits (Paterson A. H., ed.), CRC, Boca Raton, FL, pp. 103–118.

    Google Scholar 

  10. Haley C. S. (1999) Advances in quantitative trait locus mapping, in From Jay L. Lush to Genomics: Visions for Animal Breeding and Genetics (Dekkers J. C., Lamont S. J., and Rothschild M. F., eds.), Iowa State University Press, Ames, IA, pp. 47–59.

    Google Scholar 

  11. Lipkin E. and Soller M. (2000) Quantitative trait loci in domestic animals— complex inheritance traits, in Comparative Genomics (Clark M. S., ed.), Kluwer Academic, Dordrecht, pp. 123–152.

    Google Scholar 

  12. Hoeschele I. (2001) Mapping quantitative trait loci in outbred pedigrees, in Handbook of Statistical Genetics (Balding D. J., Bishop M., and Cannings C., eds.), Wiley, Chichester, in press.

    Google Scholar 

  13. Andersson L., Haley C. S., Ellegren H., Knott S. A., Johansson M., Andersson K., et al. (1994) Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263, 1771–1774.

    Article  PubMed  CAS  Google Scholar 

  14. Georges M., Nielsen D., Mackinnon M., Mishra A., Okimoto R., Pasquino A. T., et al. (1995) Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139, 907–920.

    PubMed  CAS  Google Scholar 

  15. Spelman R. J., Coppieters W., Karim L., Van Arendonk J. A., and Bovenhuis H. (1996) Quantitative trait loci for five milk production traits on chromosome six in the Dutch Holstein-Friesian population. Genetics 144, 1799–1808.

    PubMed  CAS  Google Scholar 

  16. Knott S. A., Marklund L., Haley C. S., Andersson K., Davies W., Ellegren H., et al. (1998) Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and Large White pigs. Genetics 149, 1069–1080.

    PubMed  CAS  Google Scholar 

  17. Walling G. A., Archibald A. L., Cattermole J. A., Downing A. C., Finlayson H. A., Nicholson D., et al. (1998) Mapping of quantitative trait loci on porcine chromosome 4. Anim. Genet. 29, 415–424.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang Q., Boichard D., Hoeschele I., Ernst C., Eggen A., Murkve B., et al. (1998) Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree. Genetics 149, 1959–1973.

    PubMed  CAS  Google Scholar 

  19. De Koning D. J., Janss L. L., Rattink A. P., Van Oers P. A., De Vries B. J., Groenen M. A., et al. (1999) Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics 152, 1679–1690.

    PubMed  Google Scholar 

  20. Riquet J., Coppieters W., Cambisano N., Arranz J.-J., Berzi P., Davis S. K., et al. (1999) Fine-mapping of quantitative trait loci by identity by descent in outbred populations: application to milk production in dairy cattle. Proc. Natl. Acad. Sci. USA 96, 9252–9257.

    Article  PubMed  CAS  Google Scholar 

  21. Penrose L. S. (1938) Genetic linkage in graded human characters. Ann. Eugen. 8, 233–237.

    Google Scholar 

  22. Henderson C. R. (1984) Applications of Linear Models in Animal Breeding. University of Guelph Press, Guelph, Ontario, Canada.

    Google Scholar 

  23. Bink M. C. (1998) Complex pedigree analysis to detect quantitative trait loci in dairy cattle. Ph.D. dissertation, Wageningen Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  24. George A. W., Visscher P. M., and Haley C. S. (2000) Mapping quantitative trait loci in complex pedigrees: a two step variance component approach. Genetics in press.

    Google Scholar 

  25. Knott S. A. and Haley C. S. (1992) Maximum likelihood mapping of quantitative trait loci using full-sib families. Genetics 132, 1211–1222.

    PubMed  CAS  Google Scholar 

  26. Soller M., Genizi A., and Brody T. (1976) On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor. Appl. Genet. 47, 35–39.

    Article  Google Scholar 

  27. Soller M. and Genizi A. (1978) The efficiency of experimental designs for the detection of linkage between a marker locus and a locus affecting a quantitative trait in segregating populations. Biometrics 34, 47–55.

    Article  Google Scholar 

  28. Xu S. (1996) Computation of the full likelihood function for estimating variance at a quantitative trait locus. Genetics 144, 1951–1960.

    PubMed  CAS  Google Scholar 

  29. Jansen R. C., Johnson D. L., and Van Arendonk J. A. (1998) A mixture model approach to the mapping of quantitative trait loci in complex populations with an application to multiple cattle families. Genetics 148, 391–399.

    PubMed  CAS  Google Scholar 

  30. Chakraborty R. and Weiss K. M. (1988) Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proc. Natl. Acad. Sci. USA 85, 9119–9123.

    Article  PubMed  CAS  Google Scholar 

  31. Stephens J. C., Briscoe D., and O’Brien S. J. (1994) Mapping by admixture linkage disequilibrium in human populations: limits and guidelines. Am. J. Hum. Genet. 55, 809–824.

    PubMed  CAS  Google Scholar 

  32. McKeigue P. M. (1997) Mapping genes underlying ethnic differences in disease risk by linkage disequilibrium in recently admixed populations. Am. J. Hum. Genet. 60, 188–196.

    PubMed  CAS  Google Scholar 

  33. Baret P. V. and Hill W. G. (1997) Gametic disequilibrium mapping: potential application in livestock. Anim. Breed. Abst. 65, 309–318.

    Google Scholar 

  34. Beckmann J. S. and Soller M. (1988) Detection of linkage between marker loci and loci affecting quantitative traits in crosses between segregating populations. Theor. Appl. Genet. 76, 228–236.

    Article  Google Scholar 

  35. Haley C. S., Knott S. A., and Elsen J.-M. (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136, 1195–1207.

    PubMed  CAS  Google Scholar 

  36. Falconer D. S. and Mackay T. F. (1996) Introduction to Quantitative Genetics. Longman, Essex, UK.

    Google Scholar 

  37. Jansen R. C. (1993) Interval mapping of multiple quantitative trait loci. Genetics 135, 205–211.

    PubMed  CAS  Google Scholar 

  38. Zeng Z.-B. (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA 90, 10,972–10,976.

    Article  PubMed  CAS  Google Scholar 

  39. Zeng Z.-B. (1944) Precision mapping of quantitative trait loci. Genetics 136, 1457–1468.

    Google Scholar 

  40. Carlborg O., Andersson L., and Kinghorn B. P. (2000) The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci. Genetics 155, 2003–2010.

    PubMed  CAS  Google Scholar 

  41. Lander E. S. and Kruglyak L. (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247.

    Article  PubMed  CAS  Google Scholar 

  42. Churchill G. A. and Doerge R. W. (1994) Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.

    PubMed  CAS  Google Scholar 

  43. Visscher P. M., Thompson R., and Haley C. S. (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143, 1013–1020.

    PubMed  CAS  Google Scholar 

  44. Lebreton C. M. and Visscher P. M. (1998) Empirical nonparametric bootstrap strategies in quantitative trait loci mapping: conditioning on the genetic model. Genetics 148, 525–535.

    PubMed  CAS  Google Scholar 

  45. Perez-Enciso M. and Varona L. (2000) Quantitative trait loci mapping in F2 crosses between outbred lines. Genetics 155, 391–405.

    PubMed  CAS  Google Scholar 

  46. Knott S. A., Elsen J.-M., and Haley C. S. (1994) Multiple marker mapping of quantitative trait loci in half-sib populations, in Proc. 5th World Congress on Genetics Applied to Livestock Production 21, pp. 33–36.

    Google Scholar 

  47. Knott S. A., Elsen J.-M., and Haley C. S. (1996) Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theor. Appl. Genet. 93, 71–80.

    Article  CAS  Google Scholar 

  48. Du F.-X. and Woodward B. W. (1997) A two-stage half-sib design for mapping quantitative trait loci in food animals. J. Dairy Sci. 80, 2580–2591.

    Article  PubMed  CAS  Google Scholar 

  49. Elsen J.-M., Mangin B., Goffinet B., Boichard D., and Le Roy P. (1999) Alternative models for QTL detection in livestock. I. General introduction. Genet. Sel. Evol. 31, 213–224.

    Article  CAS  Google Scholar 

  50. Mangin B., Goffinet B., Le Roy P., Boichard D., and Elsen J.-M. (1999) Alternative models for QTL detection in livestock. II. Likelihood approximations and sire marker genotype estimations. Genet. Sel. Evol. 31, 225–237.

    Article  Google Scholar 

  51. Goffinet B., Le Roy P., Boichard D., Elsen J.-M., and Mangin B. (1999) Alternative models for QTL detection in livestock. III. Heteroskedastic model and models corresponding to several distributions of the QTL effect. Genet. Sel. Evol. 31, 341–350.

    Article  Google Scholar 

  52. Lander E. S. and Botstein D. (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199.

    PubMed  CAS  Google Scholar 

  53. Van Kaam J. B., Van Arendonk J. A., Groenen M. A., Bovenhuis H., Vereijken A. L., Crooijmans R. P., et al. (1998) Whole genome scan for quantitative trait loci affecting body weight in chickens using a three generation design. Livestock Prod. Sci. 54, 133–150.

    Article  Google Scholar 

  54. Van der Beek S., Van Arendonk J. A., and Groen A. F. (1995) Power of two-and three-generation QTL mapping experiments in an outbred population containing full-sib or half-sib families. Theor. Appl. Genet. 91, 1115–1124.

    Article  Google Scholar 

  55. George A. W. (1998) A Bayesian analysis for the mapping of a quantitative trait locus given half-sib data. Ph.D. dissertation. Centre in Statistical Science and Industrial Mathematics and the School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.

    Google Scholar 

  56. Le Roy P., Elsen J.-M., Boichard D., Mangin B., Bidanel J. P., and Goffinet B. (1998) An algorithm for QTL detection in mixture of full and half sib families, in Proc. 6th World Congress on Genetics Applied to Livestock Production 26, pp. 257–260.

    Google Scholar 

  57. Weller J. I., Kashi Y., and Soller M. (1990) Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J. Dairy Sci. 73, 2525–2537.

    Article  PubMed  CAS  Google Scholar 

  58. Cowen N. M. (1988) The use of replicated progenies in marker-based mapping of QTL’s. Theor. Appl. Genet. 75, 857–862.

    Google Scholar 

  59. Soller M. and Beckmann J. S. (1990) Marker-based mapping of quantitative trait loci using replicated progenies. Theor. Appl. Genet. 80, 205–208.

    Article  Google Scholar 

  60. Rocha J. L., Sanders J. O., Cherbonnier D. M., Lawlor T. J., and Taylor J. F. (1998) Blood groups and milk and type traits in dairy cattle: after forty years of research. J. Dairy Sci. 81, 1663–1680.

    Article  PubMed  CAS  Google Scholar 

  61. Coppieters W., Riquet J., Arranz J.-J., Berzi P., Cambisano N., Grisart B., et al. (1998) A QTL with major effect on milk yield and composition maps to bovine chromosome 14. Mamm. Genome 9, 540–544.

    Article  PubMed  CAS  Google Scholar 

  62. Grignola F. E., Hoeschele I., and Tier B. (1996) Mapping quantitative trait loci in outcross populations via residual maximum likelihood. I. Methodology. Genet. Sel. Evol. 28, 479–490.

    Article  CAS  Google Scholar 

  63. Grignola F. E., Hoeschele I., Zhang Q., and Thaller G. (1996) Mapping quantitative trait loci in outcross populations via residual maximum likelihood. II. A simulation study. Genet. Sel. Evol. 28, 491–504.

    Article  CAS  Google Scholar 

  64. Grignola F. E., Zhang Q., and Hoeschele I. (1997) Mapping linked quantitative trait loci via residual maximum likelihood. Genet. Sel. Evol. 29, 529–544.

    Article  Google Scholar 

  65. Searle S. R., Casella G., and McCulloch C. E. (1992) Variance Components. Wiley, New York.

    Book  Google Scholar 

  66. Elston R. C. and Stewart J. (1971) A general model for the genetic analysis of pedigree data. Hum. Heredity 21, 523–542.

    Article  PubMed  CAS  Google Scholar 

  67. Almasy L. and Blangero J. (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62, 1198–1211.

    Article  PubMed  CAS  Google Scholar 

  68. Fernando R. L. and Grossman M. (1989) Marker-assisted selection using best linear unbiased prediction. Genet. Sel. Evol. 21, 467–477.

    Article  Google Scholar 

  69. Cantet R. J. and Smith C. (1991) Reduced animal model for marker-assisted selection using best linear unbiased prediction. Genet. Sel. Evol. 23, 221–233.

    Article  Google Scholar 

  70. Wang T., Fernando R. L., Van der Beek S., and Grossman M. (1995) Covariance between relatives for a marked quantitative trait locus. Genet. Sel. Evol. 27, 251–274.

    Article  Google Scholar 

  71. Van Arendonk J. A., Tier B., Bink M. C., and Bovenhuis H. (1998) Restricted maximum likelihood analysis of linkage between genetic markers and quantitative trait loci for a granddaughter design. J. Dairy Sci. 81, 76–84.

    Article  PubMed  Google Scholar 

  72. Uimari P., Zhang Q., Grignola F. E., Hoeschele I., and Thaller G. (1996) Analysis of QTL Workshop I granddaughter design data using least-squares, residual maximum likelihood and Bayesian methods. J. Quant. Trait Loci 2, article 7 (http://probe.nalusda.gov:8000/otherdocs/jqtl/jqtl1996-07/).

  73. Allison D. B., Neale M. C., Zannolli R., Schork N. J., Amos C. I., and Blangero J. (1999) Testing the robustness of the likelihood-ratio test in a variancecomponent quantitative-trait-loci-mapping procedure. Am. J. Hum. Genet. 65, 531–544.

    Article  PubMed  CAS  Google Scholar 

  74. Thompson E. A. and Heath S. C. (1999) Estimation of conditional multilocus gene identity among relatives, in Statistics in Molecular Biology (Seillier-Moseiwitch F., Donnelly P., and Waterman M., eds.), Springer-Verlag, New York, pp. 95–113.

    Chapter  Google Scholar 

  75. Amos C. I. (1994) Robust variance-components approach for assessing genetic linkage in pedigrees. Am. J. Hum. Genet. 54, 535–543.

    PubMed  CAS  Google Scholar 

  76. Morton N. E. and MacLean C. J. (1974) Analysis of family resemblance. III. Complex segregation analysis of quantitative traits. Am. J. Hum. Genet. 26, 489–503.

    PubMed  CAS  Google Scholar 

  77. Ott J. (1979) Maximum likelihood estimation by counting methods under polygenic and mixed models in human pedigrees. Am. J. Hum. Genet. 31, 161–175.

    PubMed  CAS  Google Scholar 

  78. Boerwinkle E., Chakraborty R., and Sing C. F. (1986) The use of measured genotype information in the analysis of quantitative phenotype in man. I. Models and analytical methods. Am. Hum. Genet. 50, 181–194.

    Article  CAS  Google Scholar 

  79. George V. T. and Elston R. C. (1987) Testing the association between polymorphic genetic markers and quantitative traits in pedigrees. Genet. Epidemiol. 4, 193–201.

    Article  PubMed  CAS  Google Scholar 

  80. Bonney G. E., Lathrop G. M., and Lalouel J.-M. (1988) Combined linkage and segregation analysis using regressive models. Am. J. Hum. Genet. 43, 29–37.

    PubMed  CAS  Google Scholar 

  81. Guo S. W. and Thompson E. A. (1992) A Monte Carlo method for combined segregation and linkage analysis. Am. J. Hum. Genet. 51, 1111–1126.

    PubMed  CAS  Google Scholar 

  82. Hasstedt S. J. (1993) Variance components/major locus likelihood approximation for quantitative, polychotomous, and multivariate data. Genet. Epidemiol. 10, 145–158.

    Article  PubMed  CAS  Google Scholar 

  83. Fernando R. L., Stricker C., and Elston R. C. (1994) The finite polygenic mixed model: an alternative formulation for the mixed model of inheritance. Theor. Appl. Genet. 88, 573–580.

    Article  Google Scholar 

  84. Xu S. and Atchley W. R. (1995) A random model approach to interval mapping of quantitative trait loci. Genetics 141, 1189–1197.

    PubMed  CAS  Google Scholar 

  85. Xie C., Gessler D. D., and Xu S. (1998) Combining different line crosses for mapping quantitative trait loci using the identical by descent-based variance component method. Genetics 149, 1139–1146.

    PubMed  CAS  Google Scholar 

  86. Xu S. and Gessler D. D. (1998) Multipoint genetic mapping of quantitative trait loci using a variable number of sibs per family. Genet. Res., Camb. 71, 73–83.

    Article  CAS  Google Scholar 

  87. Kinghorn B. P., Kennedy B. W., and Smith C. (1993) A method of screening for genes of major effect. Genetics 134, 351–360.

    PubMed  CAS  Google Scholar 

  88. Meuwissen T. H. and Goddard M. E. (1997) Estimation of effects of quantitative trait loci in large complex pedigrees. Genetics 146, 409–416.

    PubMed  CAS  Google Scholar 

  89. Shoemaker J. S., Painter I. S., and Weir B. S. (1999) Bayesian statistics in genetics: a guide for the uninitiated. Trends Genet. 15, 354–358.

    Article  PubMed  CAS  Google Scholar 

  90. Sillanpaa M. J. (1999) Bayesian QTL mapping in inbred and outbred experimental designs. Ph.D. dissertation. Rolf Nevanlinna Institute Research Reports A30, University of Helsinki, Finland.

    Google Scholar 

  91. Uimari P. and Hoeschele I. (1997) Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. Genetics 146, 735–743.

    PubMed  CAS  Google Scholar 

  92. Stephens D. A. and Fisch R. D. (1998) Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo. Biometrics 54, 1334–1347.

    Article  Google Scholar 

  93. Green P. J. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732.

    Article  Google Scholar 

  94. Hoeschele I. and VanRaden P. M. (1993) Bayesian analysis of linkage between genetic markers and quantitative trait loci. I. Prior knowledge. Theor. Appl. Genet. 85, 953–960.

    Google Scholar 

  95. Hoeschele I. and VanRaden P. M. (1993) Bayesian analysis of linkage between genetic markers and quantitative trait loci. II. Combining prior knowledge with experimental evidence. Theor. Appl. Genet. 85, 946–952.

    Google Scholar 

  96. Thaller G. and Hoeschele I. (1996) A Monte Carlo method for Bayesian analysis of linkage between single markers and quantitative trait loci. I. Methodology. Theor. Appl. Genet. 93, 1161–1166.

    Article  CAS  Google Scholar 

  97. Thaller G. and Hoeschele I. (1996) A Monte Carlo method for Bayesian analysis of linkage between single markers and quantitative trait loci. II. A simulation study. Theor. Appl. Genet. 93, 1167–1174.

    Article  CAS  Google Scholar 

  98. Uimari P., Thaller G., and Hoeschele I. (1996) The use of multiple markers in a Bayesian method for mapping quantitative trait loci. Genetics 143, 1831–1842.

    PubMed  CAS  Google Scholar 

  99. Bink M. C., Van Arendonk J. A., and Quaas R. L. (1998) Breeding value estimation with incomplete marker data. Genet. Sel. Evol. 30, 45–58.

    Article  Google Scholar 

  100. Bink M. C., Quaas R. L., and Van Arendonk J. A. (1998) Bayesian estimation of dispersion parameters with a reduced animal model including polygenic and QTL effects. Genet. Sel. Evol. 30, 103–125.

    Article  Google Scholar 

  101. Bink M. C., Janss L. L., and Quaas R. L. (2000) Markov chain Monte Carlo for mapping a quantitative trait locus in outbred populations. Genet. Res. Camb. 75, 231–241.

    Article  CAS  Google Scholar 

  102. Bink M. C. and Van Arendonk J. A. (1999) Detection of quantitative trait loci in outbred populations with incomplete marker data. Genetics 151, 409–420.

    PubMed  CAS  Google Scholar 

  103. George A. W., Mengersen K. L., and Davis G. P. (2000) Localization of a quantitative trait locus via a Bayesian approach. Biometrics 56, 40–51.

    Google Scholar 

  104. Janss L. L., Thompson R., and Van Arendonk J. A. (1995) Application of Gibbs sampling for inference in a mixed major gene-polygenic inheritance model in animal populations. Theor. Appl. Genet. 91, 1137–1147.

    Article  Google Scholar 

  105. De Koning D. J., Janss L. L., Van Arendonk J. A., Van Oers P. A., and Groenen M. A. (1998) Mapping major genes affecting meat quality in Meishan crossbreds using standard linkage software, in Proc. 6th World Congress on Genetics Applied to Livestock Production 26, pp. 410–413.

    Google Scholar 

  106. Luo Z. W. (1993) The power of two experimental designs for detecting linkage between a marker locus and a locus affecting a quantitative character in a segregating population. Genet. Sel. Evol. 25, 249–261.

    Article  Google Scholar 

  107. Le Roy P. and Elsen J.-M. (1995) Numerical comparison between powers of maximum likelihood and analysis of variance methods for QTL detection in progeny test designs: the case of monogenic inheritance. Theor. Appl. Genet. 90, 65–72.

    Article  Google Scholar 

  108. Muranty H. (1996) Power of tests for quantitative trait loci detection using fullsib families in different schemes. Heredity 76, 156–165.

    Article  Google Scholar 

  109. Alfonso L. and Haley C. S. (1998) Power of different F2 schemes for QTL detection in livestock. Anim. Sci. 66, 1–8.

    Article  Google Scholar 

  110. Baret P. V., Knott S. A., and Visscher P. M. (1998) On the use of linear regression and maximum likelihood for QTL mapping in half-sib designs. Genet. Res. Camb. 72, 149–158.

    Article  CAS  Google Scholar 

  111. Song J. Z., Soller M., and Genizi A. (1999) The full-sib intercross line (FSIL): a QTL mapping design for outcrossing species. Genet. Res. Camb. 73, 61–73.

    Article  Google Scholar 

  112. Kim J.-J. (1999) Detection of Quantitative Trait Loci for Growth and Beef Carcass Quality Traits in a Cross of Bos taurus × Bos indicus Cattle. Ph.D. dissertation, Department of Animal Science, Texas A&M University, College Station, TX.

    Google Scholar 

  113. Visscher P. M. and Haley C. S. (1996) Detection of putative quantitative trait loci in line crosses under infinitesimal genetic models. Theor. Appl. Genet. 93, 691–702.

    Article  Google Scholar 

  114. Liu Z. and Dekkers J. C. (1998) Least squares interval mapping of quantitative trait loci under the infinitesimal genetic model in outbred populations. Genetics 148, 495–505.

    PubMed  CAS  Google Scholar 

  115. Coppieters W., Kvasz A., Farnir F., Arranz J.-J., Grisart B., Mackinnon M., et al. (1998) A rank-based nonparametric method for mapping quantitative trait loci in outbred half-sib pedigrees: application to milk production in a granddaughter design. Genetics 149, 1547–1555.

    PubMed  CAS  Google Scholar 

  116. Maliepaard C. and Van Ooijen J. W. (1994) QTL mapping in a full-sib family of an outcrossing species, in Biometrics in Plant Breeding: Applications of Molecular Markers (Van Ooijen J. W. and Jansen J., eds.), DLO-Centre for Plant Breeding and Reproduction Research, Wageningen, The Netherlands, pp. 140–146.

    Google Scholar 

  117. Zhang Q. and Hoeschele I. (1998) A very brief description for using the computer program MQREMLH for multiple QTL mapping via residual maximum likelihood. Mimeo, Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  118. Stricker C., Fernando R. L., and Elston R. C. (1994) SALP—Segregation and Linkage Analysis for Pedigrees, Release 2.0. Swiss Federal Institute of Technology ETH, Zurich.

    Google Scholar 

  119. Haley C. S. and Knott S. A. (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315–324.

    PubMed  CAS  Google Scholar 

  120. Xu S. (1998) Further investigation on the regression method of mapping quantitative trait loci. Heredity 80, 364–373.

    Article  PubMed  Google Scholar 

  121. Terwilliger J. D. and Goring H. H. (2000) Gene mapping in the 20th and 21st centuries: statistical methods, data analysis, and experimental design. Hum. Biol. 72, 63–132.

    PubMed  CAS  Google Scholar 

  122. Rocha J. L., Taylor J. F., Sanders J. O., Openshaw S. J., and Fincher R. (1995) Genetic markers to manipulate QTL: the additive illusion, in Proc. 44th Ann. Natl. Breeders Roundtable, pp. 12–38.

    Google Scholar 

  123. De Koning D. J., Visscher P. M., Knott S. A., and Haley C. S. (1998) A strategy for QTL detection in half-sib populations. Anim. Sci. 67, 257–268.

    Article  Google Scholar 

  124. Jinks J. L. (1977) Discussion of Dr. Eaves’ paper. J. R. Statis. Soc. Ser. A. 140, 352–353.

    Google Scholar 

  125. Haley C. S. and Visscher P. M. (1998) Strategies to utilize marker-quantitative trait loci associations. J. Dairy Sci. 81, 85–97.

    Article  PubMed  CAS  Google Scholar 

  126. Soller M. and Medjugorac I. (1999) A successful marriage: making the transition from quantitative trait locus mapping to marker-assisted selection, in From Jay L. Lush to Genomics: Visions for Animal Breeding and Genetics (Dekkers J. C., Lamont S. J., and Rothschild M. F., eds.), Iowa State University Press, Ames, IA, pp. 85–96.

    Google Scholar 

  127. Gelbert L. M. and Gregg R. E. (1997) Will genetics really revolutionize the drug discovery process? Curr. Opin. Biotech. 8, 669–674.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Rocha, J.L., Pomp, D., Van Vleck, L.D. (2002). QTL Analysis in Livestock. In: Camp, N.J., Cox, A. (eds) Quantitative Trait Loci. Methods in Molecular Biology™, vol 195. Humana Press. https://doi.org/10.1385/1-59259-176-0:311

Download citation

  • DOI: https://doi.org/10.1385/1-59259-176-0:311

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-927-8

  • Online ISBN: 978-1-59259-176-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics