Skip to main content

Affinity Purification of Immunoglobulins Using Protein A Mimetic (PAM)

  • Protocol
The Protein Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

While antibodies of the G class can be conveniently purified by affinity chromatography using immobilized protein A or G even at large scale, scaling up purification of IgM, IgA, and IgE and IgY still presents several problems, as specific and costeffective ligands for these classes of immunoglobulins are not available. Protein A (1), which is widely used for the affinity purification of antibodies from sera or cell culture supernatants, does not recognize immunoglobulins of the M, A, E, and Y classes well and is not used to capture and purify these immunoglobulins from crude sources. Moreover, these two proteins are obtained from microorganisms or genetically modified bacteria, which carries the risk of affecting the safety of the purified antibodies through the presence of contaminants such as viruses, pirogens, or DNA fragments. As a result, the availability of alternative ligands for the affinity purification of antibodies is highly important from an industrial aspect. After immobilization on solid supports, the mannan binding protein (MBP), an affinity ligand for IgM, provides affinity media useful for IgM isolation based on a temperature-dependent interaction of the ligand with the immunoglobulins (2). The use of immobilized MBP for the purification of IgM is based on the adsorption in the presence of calcium at a temperature of 4°C, and the elution at room temperature of adsorbed immunoglobulins in the presence of ethylenediamineotetraacetic acid (EDTA). This ligand shows low binding affinity for IgG, but binds to bovine and human IgM with lower affinity than murine IgM. However, in addition to the complexity of MBP isolation, functional binding capacities of MBP columns are limited to 1 or 2 mg of IgM per milliliter of support. IgA, which is involved in the first specific defense against natural infection (3) and represents the second most abundant immunoglobulin in serum (4), can be purified through the combination of different fractionation techniques such as ammonium sulfate precipitation, ion-exchange chromatography, and gel filtration (5,6). All these procedures are time consuming, labor intensive, and are not compatible with industrial scaling up. Lectin jacalin, isolated from jackfruit seeds (7), binds to IgA and can be conveniently used for the affinity purification of IgA from colostrum or serum (8). However, several aspects limit the use of this lectin for large-scale purification of monoclonal IgA from cell culture supernatants. First, jacalin is a biologically active lectin, being a potent T cell mitogen and a strong B cell polyclonal activator (9), thus requiring a careful control for ligand leakage into the purified preparation. Second, jacalin binds to the carbohydrate moiety of IgA, and D-galactose is required to elute IgA from affinity columns, which is costly and impractical for large-scale operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fuglistaller, P. (1989) Comparison of immunoglobulin binding capacities and ligand leakage using eight different protein A affinity chromatography matrices. J. Immunol. Meth. 124, 171–177.

    Article  CAS  Google Scholar 

  2. Nevens, J. R., Mallia, A. K., Wendt, M. W., and Smith, P. K. (1992) Affinity chromatographic purification of immunoglobulin M antibodies utilizing immobilized mannan binding protein. J. Chromatogr. 597, 247–256.

    Article  PubMed  CAS  Google Scholar 

  3. Tomasi, T. B. and Bienenstock, J. (1968) Secretory immunoglobulins. Adv. Immunol. 9, 1.

    Article  PubMed  CAS  Google Scholar 

  4. Mestecky, J. R. and Kraus, F. W. (1971) Method of serum IgA isolation. J. Immunol. 107, 605–607.

    PubMed  CAS  Google Scholar 

  5. Waldam, R. H., Mach, J. P., Stella, M. M., and Rowe, D. S. (1970) Secretory IgA in human serum. J. Immunol. 105, 43–47.

    Google Scholar 

  6. Khayam-Bashi, H., Blanken, R. M., and Schwartz, C. L. (1977) Chromatographic separation and purification of secretory IgA from human milk. Prep. Biochem. 7, 225–241.

    Article  PubMed  CAS  Google Scholar 

  7. Roque-Barreira, M. R. and Campos-Nieto, A. (1985) Jacalin: an IgA-binding lectin. J._Biol. Chem. 134, 1740–1743.

    CAS  Google Scholar 

  8. Kondoh, H., Kobayashi, K., and Hagiwara, K. (1987) A simple procedure for the isolation of human secretory IgA of IgA1 and IgA2 subclass by a jackfruit lectin, jacalin, affinity chromatography. Mol. Immunol. 24, 1219–1222.

    Article  PubMed  CAS  Google Scholar 

  9. Bunn-Moreno, M. M. and Campos-Neto, A. (1981) Lectin(s) extracted from seeds of artocarpus integrifolia (jackfruit): potent and selective stimulator(s) of distinct human T and B cell functions. J. Immunol. 127, 427–429.

    PubMed  CAS  Google Scholar 

  10. Phillips, T. M., More, N. S., Queen, W. D., and Thompson, A. M. (1985) Isolation and quantification of serum IgE levels by high-performance immunoaffinity chromatography. J. Chromatogr. 327, 205–211.

    Article  PubMed  CAS  Google Scholar 

  11. Lehrer, S. B. (1979) Isolation of IgE from normal mouse serum. Immunology 36, 103–109.

    PubMed  CAS  Google Scholar 

  12. Ikeyama, S., Nakagawa, S., Arakawa, M., Sugino, H., and Kakinuma, A. (1986) Purification and characterization of IgE produced by human myeloma cell line, U266. Mol. Immunol. 23, 159–167.

    Article  PubMed  CAS  Google Scholar 

  13. Zola, H., Garland, L. G., Cox, H. C., and Adcock, J. J. (1978) Separation of IgE from IgG subclasses using staphylococcal protein A. Int. Arch. Allergy Appl. Immunol. 56, 123–127.

    Article  PubMed  CAS  Google Scholar 

  14. Polson, A., von Wechmar, M. B., and van Regenmortel, M. H. V. (1980) Isolation of viral IgY antibodies fron yolks of immunized hens. Immunol. Commun. 9, 475–493.

    PubMed  CAS  Google Scholar 

  15. Gassmann, M., Thommes, P., Weiser, T., and Hubscher, U. (1990) Efficient production of chicken egg yolk antibodies against a conserved mammalian protein. FASEB J. 4, 2528–2532.

    PubMed  CAS  Google Scholar 

  16. Yang, J., Jin, Z., Yu, Q., Yang, T., Wang, H., and Liu, L. (1997) The selective recognition of antibody IgY for digestive cancers. Chin. J. Biotechnol. 13, 85–90.

    PubMed  CAS  Google Scholar 

  17. Terzolo, H. R., Sandoval, V. E., Caffer, M. I., Terragno, R., and Alcain, A. (1998) Agglutination of hen egg-yolk immunoglobulins (IgY) against Salmonella enterica, serovar enteritidis. Rev. Argent. Microbiol. 30, 84–92.

    PubMed  CAS  Google Scholar 

  18. Polson, A. (1990) Isolation of IgY from the yolks of eggs by a chloroform polyethylene glycol procedure. Immunol. Invest. 19, 253–258.

    Article  PubMed  CAS  Google Scholar 

  19. Hansen, P., Scoble, J. A., Hanson, B., and Hoogenraad, N. J. (1998) Isolation and purification of immunoglobulins from chicken eggs using thiophilic interaction chromatography. J. Immunol. Meth. 215, 1–7.

    Article  CAS  Google Scholar 

  20. Hatta, H., Kim, M., and Yamamoto, T. (1990) A novel isolation method for hen yolk antibody, “IgY.” Agric. Biol. Chem. 54, 2531–2535.

    PubMed  CAS  Google Scholar 

  21. Fassina, G., Verdoliva, A., Odierna, M. R., Ruvo, M., and Cassani, G. (1996) Protein A mimetic peptide ligand for affinity purification of antibodies. J. Mol. Recogn. 9, 564.

    Article  CAS  Google Scholar 

  22. Fassina, G., Verdoliva, A., Palombo, G., Ruvo, M., and Cassani, G. (1998) Immunoglobulin specificity of TG 19318: a novel synthetic ligand for antibody affinity purification. J. Mol. Recogn. 11, 128–133.

    Article  CAS  Google Scholar 

  23. Verdoliva, A., Basile, G., and Fassina, G. (2000) Affinity purification of immunoglobulins from chicken egg yolk using a new synthetic ligand. J. Chromatogr. B. 749, 233–242.

    Article  CAS  Google Scholar 

  24. Palombo, G., Verdoliva, A., and Fassina, G. (1998) Affinity purification of IgM using a novel synthetic ligand. J. Chromatogr. B. 715, 137–145.

    Article  CAS  Google Scholar 

  25. Palombo, G., De Falco, S., Tortora, M., Cassani, G., and Fassina, G. (1998) A synthetic ligand for IgA affinity purification. J. Mol. Recogn. 11, 243–246.

    Article  CAS  Google Scholar 

  26. Palombo, G., Rossi, M., Cassani, G., and Fassina, G. (1998) Affinity purification of mouse monoclonal IgE using a protein A mimetic ligand (TG 19318) immobilized on solid supports. J. Mol. Recogn. 11, 247–249.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Fassina, G., Palombo, G., Verdoliva, A., Ruvo, M. (2002). Affinity Purification of Immunoglobulins Using Protein A Mimetic (PAM). In: Walker, J.M. (eds) The Protein Protocols Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-169-8:1013

Download citation

  • DOI: https://doi.org/10.1385/1-59259-169-8:1013

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-940-7

  • Online ISBN: 978-1-59259-169-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics