Skip to main content

Propagation of Human Dendritic Cells In Vitro

  • Protocol
Dendritic Cell Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 64))

  • 1330 Accesses

Abstract

Considerable progress in the generation of dendritic cells (DC) from mouse and human precursors has recently been accomplished. Consequently, culture systems are now available for the in vitro generation of large numbers of DC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knight, S. C., Farrant, J., and Bryan, A. (1986) Non-adherent, low density cells from human peripheral blood contain dendritic cells and monocytes, both with veiled morphology. Immunology 57, 595ā€“603.

    PubMedĀ  CASĀ  Google ScholarĀ 

  2. Porcelli, S., Morita, C. T., and Brenner, M. B. (1992) CD1b restricts the response of human CD4-8-T lymphocytes to a microbial antigen. Nature 360,593ā€“597.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Kasinrerk, W., Baumruker, T., Majdic, O., Knapp, W., and Stockinger, H. (1993) CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor. J. Immunol. 150,579ā€“584.

    PubMedĀ  CASĀ  Google ScholarĀ 

  4. Romani, N., Gruner, S., Brang, D., et al. (1994) Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180, 83ā€“93.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Sallusto, F. and Lanzavecchia, A. (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179,1109ā€“1118.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Zhou, L.-J. and Tedder, T. F. (1996) CD14+blood monocytes can differentiate into functionally mature CD83+dendritic cells. Proc. Natl. Acad. Sci. USA 93,2588ā€“2592.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Pickl, W. F., Majdic, O., Kohl, P., et al. (1996) Molecular and functional characteristics of dendritic cells generated from highly purified CD14+peripheral blood monocytes. J. Immunol. 157, 3850ā€“3859.

    PubMedĀ  CASĀ  Google ScholarĀ 

  8. Piemonti, L., Bernasconi, S., Luini, W., et al. (1995) IL-13 supports differentiation of dendritic cells from circulating precursors in concert with GM-CSF. Eur. Cytokine Netw. 6, 245ā€“252.

    PubMedĀ  CASĀ  Google ScholarĀ 

  9. Palucka, K. A., Taquet, N., Sanchez-Chapuis, F., and Gluckman, J. C. (1998) Dendritic cells as the terminal stage of monocyte differentiation. J. Immunol. 160, 4587ā€“4595.

    PubMedĀ  CASĀ  Google ScholarĀ 

  10. Sallusto, F., Cella, M., Danieli, C., and Lanzavecchia, A. (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: down-regulation by cytokines and bacterial products. J. Exp. Med. 182, 389ā€“400.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Caux, C., Saeland, S., Favre, C., Duvert, V., Mannoni, P., and Banchereau, J. (1990) Tumor necrosis factor-alpha strongly potentiates interleukin-3 and granu-locyte-macrophage colony-stimulating factor-induced proliferation of human CD34+hematopoietic progenitor cells. Blood 75, 2292ā€“2298.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Backx, B., Broeders, L., Bot, F. J., and Lowenberg, B. (1991) Positive and negative effects of Tumor Necrosis Factor on colony growth from highly purified normal marrow progenitors. Leukemia 5, 66ā€“70.

    PubMedĀ  CASĀ  Google ScholarĀ 

  13. Jacobsen, S. E. W., Ruscetti, F. W., Dubois, C. M., and Keller, J. R. (1992) Tumor necrosis factor Ī± directly and indirectly regulates hematopoietic progenitor cell proliferation: role of colony-stimulating factor receptor modulation. J. Exp. Med. 175, 1759ā€“1772.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Reid, C. D. L., Stackpoole, A., Meager, A., and Tikerpae, J. (1992) Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow. J. Immunol. 149, 2681ā€“2688.

    PubMedĀ  CASĀ  Google ScholarĀ 

  15. Caux, C., Dezutter-Dambuyant, C., Schmitt, D., and Banchereau, J. (1992) GM-CSF and TNF-Ī± cooperate in the generation of dendritic Langerhans cells. Nature 360,258ā€“261.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Santiago-Schwarz, F., Belilos, E., Diamond, B., and Carsons, S. E. (1992) TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages. J. Leukocyte Biol. 52, 274ā€“281.

    PubMedĀ  CASĀ  Google ScholarĀ 

  17. Szabolcs, P., Moore, M. A. S., and Young, J. W. (1995) Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34+ bone marrow precursors cultured with c-kit-ligand, GM-CSF, and TNFĪ±. J. Immunol. 154,5851ā€“5861.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Strunk, D., Rappersberger, K., Egger, C., et al. (1996) Generation of human dendritic cells/Langerhans cells from circulating CD34+ hematopoietic progenitor cells. Blood 87, 1292ā€“1302.

    PubMedĀ  CASĀ  Google ScholarĀ 

  19. Rosenzwajg, M., Canque, B., and Gluckman, J. C. (1996) Human dendritic cell differentiation pathway from CD34+hematopoietic precursor cells. Blood 87, 535ā€“544.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Young, J. W., Szabolcs, P., and Moore, M. A. S. (1995) Identification of dendritic cell colony-forming units among normal human CD34+bone marrow progenitors that are expanded by c-kit-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor Ī±. J. Exp. Med. 182, 1111ā€“1120.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Siena, S., Di Nicola, M., Bregni, M., et al. (1995) Massive ex vivo generation of functional dendritic cells from mobilized CD34+ blood progenitors for anticancer therapy. Exp. Hematol. 23, 1463ā€“1471.

    PubMedĀ  CASĀ  Google ScholarĀ 

  22. Strobl, H., Bello-Fernandez, C., Riedl, E., et al. (1997) Flt3 ligand in cooperation with transforming growth factor-beta1 potentiates in vitro development of Langer-hans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood 90, 1425ā€“1434.

    PubMedĀ  CASĀ  Google ScholarĀ 

  23. Saraya, K. and Reid, C. D. (1996) Stem cell factor and the regulation of dendritic cell production from CD34+ progenitors in bone marrow and cord blood. Br. J. Haematol. 93, 258ā€“264.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Caux, C., Vanbervliet, B., Massacrier, C., Durand, I., and Banchereau, J. (1996) Interleukin-3 cooperates with tumor necrosis factor a for the development of human dendritic/Langerhans cells from cord blood CD34+ hematopoietic progenitor cells. Blood 87, 2376ā€“2385.

    PubMedĀ  CASĀ  Google ScholarĀ 

  25. Caux, C., Massacrier, C., Dezutter-Dambuyant, C., et al. (1995) Human dendritic Langerhans cells generated in vitro from CD34+progenitors can prime naive CD4+T cells and process soluble antigen. J. Immunol. 155, 5427ā€“5435.

    PubMedĀ  CASĀ  Google ScholarĀ 

  26. Lardon, F., Snoeck, H. W., Berneman, Z. N., et al. (1997) Generation of dendritic cells from bone marrow progenitors using GM-CSF, TNF-alpha, and additional cytokines: antagonistic effects of IL-4 and IFN-gamma and selective involvement of TNF-alpha receptor-1. Immunology 91, 553ā€“559.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Ratta, M., Rondelli, D., Fortuna, A., et al. (1998) Generation and functional characterization of human dendritic cells derived from CD34 cells mobilized into peripheral blood: comparison with bone marrow CD34+cells. Br. J. Haematol. 101,756ā€“765.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Caux, C., Vanbervliet, B., Massacrier, C., et al. (1996) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNFĪ±. J. Exp. Med. 184, 695ā€“706.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. de Saint-Vis, B., Fugier-Vivier, I., Massacrier, C., et al. (1998) The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J. Immunol. 160,1666ā€“1676.

    PubMedĀ  Google ScholarĀ 

  30. Canque, B., Camus, S., Yagello, M., and Gluckman, J. C. (1998) IL-4 and CD40 ligation affect differently the differentiation, maturation, and function of human CD34+ cell-derived CD1a+CD14- and CD1a-CD14+ dendritic cell precursors in vitro. J. Leukoc. Biol. 64, 235ā€“244.

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. Strunk, D., Egger, C., Leitner, G., Hanau, D., and Stingl, G. (1997) A skin homing molecule defines the Langerhans cell progenitor in human peripheral blood. J. Exp. Med. 185,1131ā€“1136.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Caux, C., Massacrier, C., Vanbervliet, B., et al. (1997) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNFa: II functional analysis. Blood 90, 1458ā€“1470.

    PubMedĀ  CASĀ  Google ScholarĀ 

  33. Grouard, G., Durand, I., Filgueira, L., Banchereau, J., and Liu, Y. J. (1996) Dendritic cells capable of stimulating T cells in germinal centers. Nature 384,364ā€“367.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Maraskovsky, E., Brasel, K., Teepe, M., et al. (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 184,1953ā€“1962.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Pulendran, B., Lingappa, J., Kennedy, M. K., et al. (1997) Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in Flt3 ligand-treated mice. J. Immunol. 159, 2222ā€“2231.

    PubMedĀ  CASĀ  Google ScholarĀ 

  36. Shurin, M. R., Pandharipande, P. P., Zorina, T. D., et al. (1997) Flt3 ligand induces the generation of functionally active dendritic cells in mice. Cell. Immunol. 179, 174ā€“184.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Flores-Romo, L., BjÅ”rck, P., Duvert, V., van Kooten, C., Saeland, S., and Banchereau, J. (1997) CD40 ligation on human CD34+ hematopoietic progenitors induces their proliferation and differentation into functional dendritic cells. J. Exp. Med. 185, 341ā€“349.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Strobl, H., Riedl, E., Scheinecker, C., et al. (1996) TGF-B1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors. J. Immunol. 157, 1499ā€“1507.

    PubMedĀ  CASĀ  Google ScholarĀ 

  39. Riedl, E., Strobl, H., Majdic, O., and Knapp, W. (1997) TGF-beta 1 promotes in vitro generation of dendritic cells by protecting progenitor cells from apoptosis. J. Immunol. 158, 1591ā€“1597.

    PubMedĀ  CASĀ  Google ScholarĀ 

  40. Strobl, H., Riedl, E., Bello-Fernandez, C., and Knapp, W. (1998) Epidermal Langerhans cell development and differentiation. Immunobiology 198,588ā€“605.

    PubMedĀ  CASĀ  Google ScholarĀ 

  41. Geissmann, F., Prost, C., Monnet, J. P., Dy, M., Brousse, N., and Hermine, O. (1998) Transforming growth factor beta1, in the presence of granulocyte/mac-rophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J. Exp. Med. 187, 961ā€“966.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. De Smedt, T., van Mechelen, M., De Becker, G., Urbain, J., Leo, O., and Moser, M. (1997) Effect of interleukin-10 on dendritic cell maturation and function. Eur. J. Immunol. 27, 1229ā€“1235.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Buelens, C., Verhasselt, V., de Groote, D., Thielemans, K., Goldman, M., and Willems, F. (1997) Interleukin-10 prevents the generation of dendritic cells from human peripheral blood mononuclear cells cultured with interleukin-4 and granu-locyte/macrophage-colony-stimulating factor. Eur. J. Immunol. 27, 756ā€“762.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Buelens, C., Verhasselt, V., De Groote, D., Thielemans, K., Goldman, M., and Willems, F. (1997) Human dendritic cell responses to lipopolysaccharide and CD40 ligation are differentially regulated by interleukin-10. Eur. J. Immunol. 27, 1848ā€“1852.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Menetrier-Caux, C., Montmain, G., Dieu, M. C., et al. (1998) Inhibition of the differentiation of dendritic cells from CD34+progenitors by tumour cells: role of Interleukin-6 and macrophage colony-stimulating factor. Blood 92, 1ā€“15.

    Google ScholarĀ 

  46. Gabrilovich, D. I., Chen, H. L., Girgis, K. R., et al. (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096ā€“1103.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Rougier, N., Schmitt, D., and Vincent, C. (1998) IL-4 addition during differentiation of CD34 progenitors delays maturation of dendritic cells while promoting their survival. Eur. J. Cell. Biol. 75,287ā€“293.

    PubMedĀ  CASĀ  Google ScholarĀ 

  48. Caux, C., Massacrier, C., Vanbervliet, B., et al. (1997) In CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNFa, Ricciardi-Castagnoli, P. (ed.) Plenum Press, New York, pp. 21ā€“25.

    Google ScholarĀ 

  49. Chen, B., Shi, Y., Smith, J. D., Choi, D., Geiger, J. D., and Mule, J. J. (1998) The role of tumour necrosis factor alpha in modulating the quantity of peripheral blood-derived, cytokine-driven human dendritic cells and its role in enhancing the quality of dendritic cell function in presenting soluble antigens to CD4+T cells in vitro. Blood 91, 4652ā€“4661.

    PubMedĀ  CASĀ  Google ScholarĀ 

  50. Cella, M., Sallusto, F., and Lanzavecchia, A. (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr. Opin. Immunol. 9, 10ā€“16.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Peters, J. H., Gieseler, R., Thiele, B., and Steinbach, F. (1996) Dendritic cells: from ontogenetic orphans to myelomonocytic descendants. Immunol. Today 17, 273ā€“278.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Young, J. W. and Steinman, R. M. (1996) The hematopoietic development of dendritic cells: a distinct pathway for myeloid differentiation. Stem Cells 14,376ā€“387.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Chapuis, F., Rosenzwajg, M., Yagello, M., Ekman, M., Biberfield, P., and Gluckman, J. C. (1997) Differentiation of human dendritic cells from monocytes in vitro. Eur. J. Immunol. 27, 431ā€“441.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  54. Randolph, G. J., Beaulieu, S., Lebecque, S., Steinman, R. M., and Muller, W. (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282,480ā€“483.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  55. Ardavin, C., Wu, L., Li, C. L., and Shortman, K. (1993) Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761ā€“763.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Saunders, D., Lucas, K., Ismaili, J., et al. (1996) Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 184,2185ā€“2196.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Wu, L., Li, C. L., and Shortman, K. (1996) Thymic dendritic cell precursors: relationship to the T-lymphocyte lineage and phenotype of the dendritic cell progeny. J. Exp. Med. 184, 903ā€“911.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Galy, A., Travis, M., Cen, D., and Chen, B. (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3,459ā€“473.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Res, P., Martinez-Caceres, E., Jaleco, A. C., et al. (1996) CD34+ CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood 87, 5196ā€“5206.

    PubMedĀ  CASĀ  Google ScholarĀ 

  60. Oehler, L., Majdic, O., Pickl, W. F., et al. (1998) Neutrophil granulocyte-committed cells can be driven to acquire dendritic cell characteristics. J. Exp. Med. 187, 1019ā€“1028.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Grouard, G., Rissoan, M. C., Filgueira, L., Durand, I., Banchereau, J., and Liu, Y. J. (1997) The enigmatic plasmacytoid T cells develop into dendritic cells with IL-3 and CD40-ligand. J. Exp. Med. 185,1101ā€“1111.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Oā€™Doherty, U., Peng, M., Gezelter, S., et al. (1994) Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82, 487ā€“493.

    CASĀ  Google ScholarĀ 

  63. Burkly, L., Hession, C., Ogata, L., et al. (1995) Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373, 531ā€“536.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  64. Weih, F., Carrasco, D., Durham, S. K., et al. (1995) Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kB/Rel family. Cell 80, 331ā€“340.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. Borkowski, T. A., Letterio, J. J., Farr, A. G., and Udey, M. C. (1996) A role for endogenous transforming growth factor B1 in Langerhans cell biology: the skin of transforming growth factor B1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 184, 2417ā€“2422.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. Wang, J., Taniuchi, I., Maekawa, Y., Howard, M., Cooper, M. D., and Watanabe, T. (1996) Expression and function of Fas antigen on activated murine B cells. Eur. J. Immunol. 26, 92ā€“96.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. Kashihara, M., Ueda, M., Horiguchi, Y., Furukawa, F., Hanaoka, M., and Imamura, S. (1986) A monoclonal antibody specifically reactive to human Langerhans cells. J. Invest. Dermatol. 87,602ā€“607.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  68. de Saint-Vis, B., Vincent, J., Vandenabeele, S., et al. (1998) A novel lysosome associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity 9, 325ā€“336.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  69. Dubois, B., Barthelemy, C., Durand, I., Lui, Y. J., Caux, C., and Briere, F. (1999) Toward a role of dendritic cells in the germinal center reaction: triggering of B cell proliferation and isotype switching. J. Immunol. 162, 3428ā€“3436.

    PubMedĀ  CASĀ  Google ScholarĀ 

  70. Caux, C., Massacrier, C., Dubois, B., et al. (1999) Respective involvement of TGF-beta and IL-4 in the development of Langerhans cells and non-Langerhans dendritic cells from CD34+progenitors. J. Leukoc. Biol. 66,781ā€“791.

    PubMedĀ  CASĀ  Google ScholarĀ 

  71. Valladeau, J., Duvert-Frances, V., Pin, J. J., et al. (1999) The monoclonal antibody DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and is rapidly internalized from the cell surface. Eur. J. Immunol. 29, 2695ā€“2704.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  72. Valladeau, J., Ravel, O., Dezutter-Dambuyant, C., et al. (2000). Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12, 71ā€“81.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  73. Spits, H., Couwenberg, F., Bakker, A. Q., Weijer, K., and Uittenbogaart, C. H. (2000) Id2 and Id3 inhibit development of CD34(+) stem cells into predendritic cell (pre-DC)2 but not into pre-DC 1. Evidence for a lymphoid origin of pre-DC2. J. Exp. Med. 192, 1775ā€“1784.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  74. Kadowaki, N. Antonenko, S., Lau, J. Y., and Lui, Y. J. (2000) Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J. Exp. Med. 192, 219ā€“226.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Caux, C., Dubois, B. (2001). Propagation of Human Dendritic Cells In Vitro. In: Robinson, S.P., Stagg, A.J., Knight, S.C. (eds) Dendritic Cell Protocols. Methods in Molecular Medicineā„¢, vol 64. Humana Press. https://doi.org/10.1385/1-59259-150-7:257

Download citation

  • DOI: https://doi.org/10.1385/1-59259-150-7:257

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-584-3

  • Online ISBN: 978-1-59259-150-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics