Skip to main content

Detection of Mutations in Mycobacterium tuberculosis by a Dot Blot Hybridization Strategy

  • Protocol
  • 1554 Accesses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 54))

Abstract

Genomic variation in any organism is of interest, because it may influence the phenotype of the organism. Special interest currently focuses on prokaryotic pathogens regarding mutations associated with resistance to therapeutic drugs, as well as those mutations involved in the evolution of the bacillus. The molecular basis of drug resistance in Mycobacterium tuberculosis to the front-line drugs is not mediated via plasmids, but is largely, if not entirely, owing to mutations in specific genes of M. tuberculosis. To date, 13 genes are known to be linked to resistance and many functional mutations have been described in these genes (1,2). However, the katG463 (Arg→Leu) and gyrA95 (Thr→Ser) mutations have no apparent relationship to drug resistance, and the combination of these two polymorphisms has been used to place clinical isolates of the M. tuberculosis complex into three evolutionary distinct genotypic groups (3).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Musser J. M. (1995) Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin. Microbiol. Rev. 8, 496–514.

    CAS  PubMed  Google Scholar 

  2. Mdluli K., Slayden R. A., Zhu Y., Ramaswamy S., Pan X., Mead D., Crane D. D., Musser J. M., and Barry C. E. (1998) Inhibition of a Mycobacterium tuberculosis β-ketoacyl ACP synthetase by isoniazid. Science 280, 1607–1610.

    Article  CAS  PubMed  Google Scholar 

  3. Sreevatsan S., Pan X., Stockbauer K. E., Cornell N. D., Kreisworth B. N., Whittam T. C., and Musser J. M. (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc. Natl. Acad. Sci. USA 94, 9869–9874.

    Article  CAS  PubMed  Google Scholar 

  4. Victor T. C., Warren R., Butt J. L., Jordaan A. M., Felix J. V., Venter A., Sirgel F. A., Schaaf H. S., Donald P. R., Richardson M., Cynamon M. H., and van Helden P. D. (1997) Genome and MIC stability in Mycobacterium tuberculosis and indications for continuation of use of isoniazid in multidrug-resistant tuberculosis. J. Med. Microbiol. 46, 847–957.

    Article  CAS  PubMed  Google Scholar 

  5. Felmlee T. A., Lin Q., and Whelen A. C. (1995) Genomic detection of Mycobacterium tuberculosis rifampicin resistance: comparison of single-strand conformation polymorphism and dideoxy fingerprinting. J. Clin. Microbiol. 33, 1617–1623.

    CAS  PubMed  Google Scholar 

  6. Williams D. L., Wagnespack C., Eisenach K, Crawford J. T., Portaels F., Salfinger M., Nolan C. M., Abe C., Sticht-Groh V., and Gillis T. P. (1994) Characterization of rifampicin resistance in pathogenic mycobacteria. Antimicrob. Agents Chemother. 38, 2380–2386.

    CAS  PubMed  Google Scholar 

  7. Wegenack N. L., Uhl J. R., St. Amand A. L., Tomlinson A. J., Benson L. M, Naylor S., Kline B. C., Cockerill F. R., III, and Rusnak F. (1997) Recombinant Mycobacterium tuberculosis KatG (S315T) is a competent catalase peroxidose with reduced activity towards isoniazid. J. Infect. Dis. 176, 722–727.

    Article  Google Scholar 

  8. Telenti A., Imboden P., Marchesi F., Lowri D., Cole S., Colston M. J., Matter L., Schopfer K., and Bodmer T. (1993) Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341, 647–650.

    Article  CAS  PubMed  Google Scholar 

  9. De Beenhouwer H., Lhiang Z., Jannes G., Mijs W., Machtelinckx L., Rossau R., Traore H., and Portaels E (1995) Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay. Tuberc. Lung Dis. 76, 425–430.

    Article  Google Scholar 

  10. Rossau R., Traore H., De Beenhouwer H., Mijs W., Jannes G., De Rijk P., and Portaels F. (1997) Evaluation of the INNO-LIPA Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampicin. Antimicrob. Agents Chemother. 41, 2093–2098.

    CAS  PubMed  Google Scholar 

  11. Pretorius G. S., van Helden P. D., Sirgel F., Eisenach K. D. and Victor T. C. (1995) Mutations in katG gene sequences in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis are rare. Antimicrob. Agents Chemother. 39, 2276–2281.

    CAS  PubMed  Google Scholar 

  12. Morris S., Han Bai G., Suffys P., Portillo-Gomez L., Fairchok M., and Rouse D. (1995) Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis. J. Infect. Dis. 171, 954–960.

    CAS  PubMed  Google Scholar 

  13. Telenti A., Honoré N., Bernasconi C., March J., Ortega A., Heym B., Takiff H. E., and Cole S. T. (1997) Genotype assessment of isoniazid and rifampicin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level. J. Clin. Microbiol. 35, 719–723.

    CAS  PubMed  Google Scholar 

  14. Victor T. C., Jordaan A. M., van Rie A., van der Spuy G. D., Richardson M., van Helden P. D., and Warren R. (1999) Detection of mutations in drug resistance genes of Mycobacterium tuberculosis by a dot-blot hybridization strategy. Tuberc. Lung Dis. 79, 343–348.

    Article  CAS  Google Scholar 

  15. Hirano K., Takahashi M., Kazumi Y, Fukasawa Y., and Abe C. (1998) Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis. Tuberc. Lung Dis. 78, 117–122.

    Article  Google Scholar 

  16. Victor T., duToit R., Jordaan A. M., Bester A. J., and van Helden P. D. (1990) No evidence for point mutations on codons 12, 13 and 61 of the ras gene in a high-incidence area for esophageal and gastric cancers. Cancer Res. 50, 4911–4914.

    CAS  PubMed  Google Scholar 

  17. Dragon E. A., Spadoro J. P., and Madej R. (1993) Quality control of polymerase chain reaction, in Diagnostic Molecular Microbiology: Principles and Applications (Persing D. H., ed.) ASM Press, Washington, DC, pp. 160–168.

    Google Scholar 

  18. Van Rie A., Warren R. M., Beyers N., Gie R. P., Classen C. N., Richardson M., Sampson S. L., Victor T. C., and van Helden P. D. (1999) Transmission of a multidrug-resistant Mycobacterium tuberculosis strain resembling “Strain W” among non-institutional, HIV seronegative patients. J. Infect. Dis. 180, 1608–1615.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Victor, T.C., van Helden, P.D. (2001). Detection of Mutations in Mycobacterium tuberculosis by a Dot Blot Hybridization Strategy. In: Parish, T., Stoker, N.G. (eds) Mycobacterium tuberculosis Protocols. Methods in Molecular Medicine, vol 54. Humana Press. https://doi.org/10.1385/1-59259-147-7:155

Download citation

  • DOI: https://doi.org/10.1385/1-59259-147-7:155

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-776-2

  • Online ISBN: 978-1-59259-147-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics