Skip to main content

Use of Gene Gun for Genetic Immunotherapy

In Vitro and In Vivo Methods

  • Protocol
  • 482 Accesses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 61))

Abstracts

A major thrust in the application of gene transfer technology for cancer therapy has been the modulation of the immune response. There has been a veritable explosion of information regarding the components of the immune response that are required to generate a meaningful cellular response to tumorassociated antigens (TAAs) capable of eliciting rejection of established tumor. Many of the preclinical and clinical immunogenetic studies have focused on melanoma. Historically, melanoma has been an immunoresponsive tumor for which several melanoma TAAs have been identified.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chang, A. E. and Salas, A. P. (1999) Applications of gene transfer in the adoptive immunotherapy of cancer, in Gene Therapy of Cancer (E. C. Lattime and S. L. Gerson, eds.), Academic Press, San Diego, CA, pp. 349–358.

    Google Scholar 

  2. Marshall, J. L., Hawkins, M. J., Tsang, K. Y., Richmond, E., Pedicano, J. E., Zhu, M. Z., and Schlom, J. (1999) Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen. J. Clin. Oncol. 17(1), 332–337.

    PubMed  CAS  Google Scholar 

  3. Sanda, M. G., Smith, D. C., Charles, L. G., Hwang, C., Pienta, K. J., Schlom, J., Milenic, D., Panicali, D., and Montie, J. E. (1999) Recombinant vaccinia-PSA (PROSTVAC) can induce a prostate-specific immune response in androgen-modulated human prostate cancer. Urology 53(2), 260–266.

    Article  PubMed  CAS  Google Scholar 

  4. Wolff, J. A., Malone, R. W., Williams, P., Chong, W., Acsadi, G., Jani, A., and Felgner, P.L. (1990) Direct gene transfer into mouse muscle in vivo. Science 247(4949 Pt. 1), 1465–1468.

    Article  PubMed  CAS  Google Scholar 

  5. Plautz, G. E., Yang, Z., Wu., B, Gao, X., Huang, L., and Nabel, G. J. (1993) Immunotherapy of malignancy by in vivo gene transfer into tumors. Proc. Natl. Acad. Sci. USA 90, 4645–4649.

    Article  PubMed  CAS  Google Scholar 

  6. Nabel, G. J., Gordon, D., Bishop, D. K., Nickoloff, B. J., Yang, Z., Aruga, A., Cameron, M. J., Nabel, E. G., and Chang, A. E. (1996) Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc. Natl. Acad. Sci. USA 93, 15,388–15,393.

    Article  PubMed  CAS  Google Scholar 

  7. Miller, A. R., McBride, W. H., Hunt, K., and Economou, J. S. (1994) Cytokinemediated gene therapy for cancer. Ann. Surg. Oncol. 1(5), 436–450.

    Article  PubMed  CAS  Google Scholar 

  8. Péron, J. M., Shurin, M. R., and Lotze, M. T. (1999) Cytokine gene therapy of cancer, in Gene Therapy of Cancer (E. C. Lattime and S. L. Gerson, eds.), Academic Press, San Diego, CA, pp. 359–371.

    Google Scholar 

  9. Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., Brose, K., Jackson, V., Hamada, H., Pardoll, D., and Mulligan, R. C. (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543.

    Article  PubMed  CAS  Google Scholar 

  10. Arca, M. J., Krauss, J. C., Aruga, A., Cameron, M. J., Shu, S., and Chang, A. E. Therapeutic efficacy of T cells derived from lymph nodes draining a poorly immunogenic tumor transduced to secrete granulocyte-macrophage colony-stimulating factor. Cancer Gene Ther. 1996,3(1), 39–47.

    Google Scholar 

  11. Restifo, N. P., Spiess, P. J., Karp, S. E., Mulé, J. J., and Rosenberg, S. A. (1992) A nonimmunogenic sarcoma transduced with the cDNA for interferon γ elicits CD8+ T cells against the wild-type tumor: correlation with antigen presentation capability. J. Exp. Med. 175, 1423–1431.

    Article  PubMed  CAS  Google Scholar 

  12. Zitvogel, L., Tahara, H., Robbins, P. D., Storkus, W. J., Clarke, M. R., Nalesnik, M. A., and Lotze, M. T. (1995) Cancer immunotherapy of established tumors with IL-12: effective delivery by genetically engineered fibroblasts. J. Immunol. 155, 1393–1403.

    PubMed  CAS  Google Scholar 

  13. Shawler, D. L., Dorigo, O., Gjerset, R. A., Royston, I., Sobol, R. E., and Fakhrai, H. (1995) Comparison of gene therapy with interleukin-2 gene fibroblasts and tumor cells in the murine CT-26 model of colorectal carcinoma. J. Immunother. 17(4), 201–208.

    Article  CAS  Google Scholar 

  14. Tahara, H., Zeh, H. J. III, Storkus, W. J., Papp, I., Watkins, S. C., Gubler, Y., Wolf, S. F., Robbins, P. D., and Lotze, M. T. (1994) Fibroblasts genetically engi-neered to secrete interleukin-12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res. 54, 182–189.

    PubMed  CAS  Google Scholar 

  15. Aruga, A., Aruga, E., and Chang, A. E. (1997) Reduced efficacy of allogeneic versus syngeneic fibroblasts modified to secrete cytokines as a tumor vaccine adjuvant. Cancer Res. 57, 3230–3237.

    PubMed  CAS  Google Scholar 

  16. Zitvogel, L., Mayordoma, J. I., Tjandrawan, T., DeLeo, A. B., Clarke, M. R., Lotze, M. T., and Storku, W. J. (1996) Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J. Exp. Med. 183, 87–97.

    Article  PubMed  CAS  Google Scholar 

  17. Nair, S. K., Boczkowski, D., Snyder, D., and Gilboa, E. (1997) Antigen-presenting cells pulsed with unfractionated tumor-derived peptides are potent tumor vaccines. Eur. J. Immunol. 27, 589–597.

    Article  PubMed  CAS  Google Scholar 

  18. Fields, R. C., Shimizu, K., and Mulé, J. J. (1998) Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc. Natl. Acad. Sci. USA 95(16), 9482–9487.

    Article  PubMed  CAS  Google Scholar 

  19. Shimizu, K., Fields, R. C., Giedlin, M., and Mulé, J. J. (1999) Systemic administration of interleukin 2 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines. Proc. Natl. Acad. Sci. USA 96, 2268–2273.

    Article  PubMed  CAS  Google Scholar 

  20. Hsu, F. J., Benike, C., Fagnont, F., Liles, T. M., Czerwinski, D., Taidi, B., Engleman, E. G., and Levy, R. (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 2(1), 52–58.

    Article  PubMed  CAS  Google Scholar 

  21. Nestle, F. O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., Burg, G., and Schadendorf, D. (1998) Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nat. Med. 4(3), 328–332.

    Article  PubMed  CAS  Google Scholar 

  22. Boczkowski, D, Nair, S. K., Snyder, D, and Gilboa, E. (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med. 184, 465–472.

    Article  PubMed  CAS  Google Scholar 

  23. Butterfield, L. H., Jilani, S. M., Chakraborty, N. G., Bui, L. A., Ribas, A., Dissette, V. B., Lau, R., Camradt, S. C., Glaspy, J. A., McBride, W. H., Muhkherji, B., and Economou, J. S. (1998) Generation of melanoma-specific cytotoxic T lymphocytes by dendritic cells transduced with a MART-1 adenovirus. J. Immunol. 161, 5607–5613.

    PubMed  CAS  Google Scholar 

  24. Henderson, R. A., Nimgaonkar, M. T., Watkins, S. C., Robbins, P. D., Ball, E. D., and Finn, O. J. (1996) Human dendritic cells genetically engineered to express high levels of the human epithelial tumor antigen mucin (MUC-1). Cancer Res. 56, 3763–3770.

    PubMed  CAS  Google Scholar 

  25. Reeves, M. E., Royal, R. E., Lam, J. S., Rosenberg, S. A., and Hwu, P. (1996) Retroviral transduction of human dendritic cells with a tumor-associated antigen gene. Cancer Res. 56, 5672–5677.

    PubMed  CAS  Google Scholar 

  26. Ribas, A., Butterfield, L. H., McBride, W. H., Jilani, S. M., Bui, L. A., Vommer, C. M., Lau, R., Dissette, V. B., Hu, B., Chen, A. Y., Glaspy, J. A., and Economou, J. S. (1997) Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells. Cancer Res. 576(14), 2865–2869.

    Google Scholar 

  27. Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C. (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327, 70–73.

    Article  CAS  Google Scholar 

  28. Tang, D., DeVit, M., and Johnston, S. A. (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356, 152–156.

    Article  PubMed  CAS  Google Scholar 

  29. Yang, N. and Sun, W. H. (1995) Gene gun and other non-viral approaches for cancer gene therapy. Nature 1(5), 481–483.

    Article  CAS  Google Scholar 

  30. Burkholder, J. K., Decker, J., and Yang, N. (1993) Rapid transgene expression in lymphocyte and macrophage primary cultures after particle bombardmentmediated gene transfer. J. Immunol. Meth. 165, 149–156.

    Article  CAS  Google Scholar 

  31. Woffendin, C., Yang, Z., Udaykumar, Xu, L., Yang, N., Sheehy, M. J., and Nabel, G. J. (1994) Nonviral and viral delivery of a human immunodeficiency virus protective gene into primary human T cells. Proc. Natl. Acad. Sci. USA 91, 11,581–11,585.

    Article  PubMed  CAS  Google Scholar 

  32. Ye, Z., Qiu, P., Burkholder, J. K., Turner, J., Culp, J., Roberts, T., Shahidi, N. T., and Yang, N. S. (1998) Cytokine transgene expression and promoter gene usage in primary CD34+ cells using particle-mediated gene delivery. Hum. Gene Ther. 9, 2197–2205.

    Article  PubMed  CAS  Google Scholar 

  33. Iwasaki, A., Torres, C. A., Ohashi, P. S., Robinson, H. L., and Barber, B. H. (1997) The dominant role of bone marrow-derived cells in CTL induction following plasmid DNA immunization at different sites. J. Immunol. 159, 11–14.

    PubMed  CAS  Google Scholar 

  34. Porgador, A., Irvine, K. R., Iwasaki, A., Barber, B. H., Restifo, N. P., and Germain, R. N. (1998) Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J. Exp. Med. 188, 1075–1082.

    Article  PubMed  CAS  Google Scholar 

  35. Klinman, D. M., Sechler, J. M., Conover, J., Gu, M., and Rosenberg, A. S. (1998) Contribution of cells at the site of DNA vaccination to the generation of antigen-specific immunity and memory. J. Immunol. 160, 2388–2392.

    PubMed  CAS  Google Scholar 

  36. Tanigawa, K., Yu, H., Sun, R., Nickoloff, B. J., and Chang, A. E. (2000) Gene gun application in the generation of effector T cells for adoptive immunotherapy. Cancer Immunol. Immunother. 48, 635–643.

    Article  PubMed  CAS  Google Scholar 

  37. Tan, Y., Yang, N. S., Turner, J. G., Niu, G. L., Maassab, H. F., Sun, J., Herlocher, M. L, Chang, A. E., and Yu, H. (1999) Interleukin-12 cDNA skin transfection potentiates human papillomavirus E6 DNA vaccine-induced antitumor immune response. Cancer Gene Ther. 6(4), 331–339.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Chang, A.E., Tanigawa, K., Turner, J.G., Chang, E.C., Yu, H. (2001). Use of Gene Gun for Genetic Immunotherapy. In: Nickoloff, B.J., Hood, L. (eds) Melanoma Techniques and Protocols. Methods in Molecular Medicine, vol 61. Humana Press. https://doi.org/10.1385/1-59259-145-0:223

Download citation

  • DOI: https://doi.org/10.1385/1-59259-145-0:223

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-684-0

  • Online ISBN: 978-1-59259-145-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics