Skip to main content

Methylation Analysis of CpG Islands

  • Protocol
Metastasis Research Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 57))

Abstract

The application of Southern blotting to determine the methylation status of a particular gene has already been alluded to in Chapter 17 by Tennant et al., and methodology for Southern blotting described. This chapter examines methylation analysis of CpG islands in more depth and describes a technique by which quantitative changes may be monitored with greater sensitivity than that achieved by Southern blotting, and by which multiple CpG sites can be monitored simultaneously.

In higher order eukaryotes, DNA is methylated primarily at cytosines that are located 5' to guanosines in a CpG dinucleotide. In mammalian species, 3’5% of the cytosine residues are modified to 5-methylcytosine (Fig. 1A) and there is now considerable evidence to show that this post-transcriptional modification plays an important role in gene function (1,2). Some CpG dinucleotides are clustered together in 1-2-kb long stretches of DNA called “CpG islands” which account for approx 2% of the genome and have distinct properties when compared to the rest of the genome. CpG islands are often located in the promoter region or the first exon of expressed genes and show a high G + C content (60/270%), the remainder of the genomic DNA has a G + C content of 40% (3 and references therein). Furthermore, bulk genomic DNA has only 25% of the CpG dinucleotides one would expect from random base composition, whereas CpG islands show the expected number. The “depletion” of CpG dinucleotides may be a result of spontaneous deamination of 5-methylcytosine to thymidine, leading to the mutation of CpG to TpG and CpA on the sense and the antisense strands, respectively.

Fig. 1. (A) Cytosine is methylated at its 5-position to form 5-methylcytosine. (B) The chemical conversion of cytosine to uracil is achieved under the influence of high concentrations of bisulfite at low pH. Sulfonation of cytosine at its 6-position destabilizes the amino group in position 4, which is hydrolytically deaminated to form uracilsulfonate. Under alkaline conditions, the SO3 - group is split off again, resulting in a PCR-amplifiable uracil. Methylation of position 5, however, prevents sulfonation of cytosine and its conversion to uracil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holliday, R. and Grigg, G. W. (1993) DNA methylation and mutation. Mutat.Res. 285, 61–67.

    CAS  PubMed  Google Scholar 

  2. Issa, J.-P. J., Baylin, S. B., and Herman, J. G. (1997) DNA methylation changes in hematologic malignancies: biologic and clinical implications. Leukemia 11, 7–11.

    Google Scholar 

  3. Cross, S. H. and Bird, A. P. (1995) CpG islands and genes. Genes Dev. 5, 309–314.

    CAS  Google Scholar 

  4. Li, E., Beard, C., and Jaenisch, R. (1993) Role for DNA methylation in genomic imprinting. Nature 366, 362–365.

    Article  CAS  PubMed  Google Scholar 

  5. Pfeifer, G. P., Steigerwald, S. D., Müller, P. R., Wold, B., and Riggs, A. D. (1989) Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246, 810–813.

    Article  CAS  PubMed  Google Scholar 

  6. Riggs, A. D. and Pfeifer, G. P. (1992) X-chromosome inactivation and cell memory. Trends Genet. 8, 169–174.

    CAS  PubMed  Google Scholar 

  7. Bird, A. P. (1986) CpG-rich islands and the function of DNA methylation. Nature 321, 209–213.

    Article  CAS  PubMed  Google Scholar 

  8. Bird, A. (1992) The essentials of DNA methylation. Cell 70, 5–8.

    Article  CAS  PubMed  Google Scholar 

  9. Merlo, A., Herman, J. G., Mao, L., Lee, D. J., Gabrielson, E., Burger, P. C., et al. (1995) 5' CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTS1 in human cancers. Nat. Med. 1, 686–692.

    Article  CAS  PubMed  Google Scholar 

  10. Jost, J.-P., Saluz, H.-P., and Pawlak, A. (1991) Estradiol down regulates the binding activity of an avian vitellogenin gene repressor (MDBP-2) and triggers a gradual demethylation of the mCpG pair of its DNA binding site. Nucleic Acids Res. 19, 5771–5775.

    Article  CAS  PubMed  Google Scholar 

  11. Meehan, R., Lewis, J., Cross, S., Nan, X., Jeppesen, P., and Bird, A. (1992) Transcriptional repression by methylation of CpG. J. Cell Sci. 16(Suppl.), 9–14.

    CAS  Google Scholar 

  12. Vertino, P. M., Issa, J.-P., Pereira-Smith, O. M., and Baylin, S. B. (1994) Stabilization of DNA methyltransferase levels and CpG island hypermethylation precede SV40-induced immortalization of human fibroblasts. Cell Growth Differentiat. 5, 1395–1402.

    CAS  Google Scholar 

  13. Issa, J.-P. J., Vertino, P. M., Boehm, C. D., Newsham, I. F., and Baylin, S. B. (1996) Switch from monoallelic to biallelic human IGF2 promoter methylation during ageing an carcinogenesis. Proc. Natl. Acad. Sci. USA 93, 11757–11762.

    Article  CAS  PubMed  Google Scholar 

  14. Chen, J. X., Zheng, Y., West, M., and Tang, M. (1998) Carcinogens preferentially bind at methylated CpG in the p53 mutational hot spots. Cancer Res. 58, 2070–2075.

    CAS  PubMed  Google Scholar 

  15. Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu, R., Jarrard, D. F., et al. (1995) E-Cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 55, 5195–5199.

    CAS  PubMed  Google Scholar 

  16. Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., et al. (1991) E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J. Cell Biol. 113, 173–185.

    Article  CAS  PubMed  Google Scholar 

  17. Navarro, P., Gomez, M., Pizarro, A., Gamallo, C., Quintanilla, M., and Cano, A. (1991) A role for the E-cadherin cell-cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis. J. Cell Biol. 115, 517–533.

    Article  CAS  PubMed  Google Scholar 

  18. Vleminckx, K., Vakaet, L., Mareel, M., Fiers, W., and Van Roy, F. (1991) Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66, 107–119.

    Article  CAS  PubMed  Google Scholar 

  19. Graff, J. R., Greenberg, V. E., Herman, J. G., Westra, W. H., Boghaert, E. R., Ain, K. B., et al. (1998) Distinct patterns of E-Cadherin CpG island methylation in papillary, follicular, Hurthle’s cell, and poorly differentiated human thyroid carcinoma. Cancer Res. 58, 2063–2066.

    CAS  PubMed  Google Scholar 

  20. Shen, L., Fang, J., Qiu, D., Zhang, T., Yang, J., Chen, S., and Xiao, S. (1998) Correlation between DNA methylation and pathological changes in human hepatocellular carcinoma. Hepato-Gastroenterol. 45, 1753–1759.

    CAS  Google Scholar 

  21. Herman, J. G., Merlo, A., Mao, L., Lapidus, R. G., Issa, J.-P. J., Davidson, N. E., et al. (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 55, 4525–4530.

    CAS  PubMed  Google Scholar 

  22. Gonzalez-Zuleta, M., Bender, C. M., Yang, A. S., Nguyen, T., Beart, R. W., VanTornout, J. M., and Jones, P. A. (1995) Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 55, 4531–4535.

    Google Scholar 

  23. Fueyo, J., Gomez-Manzano, C., Bruner, J. M., Saito, Y., Zhang, B., Zhang, W., et al. (1996) Hypermethylation of the CpG island of p16/CDKN2 correlates with gene inactivation in gliomas. Oncogene 13, 1615–1619.

    CAS  PubMed  Google Scholar 

  24. Reed, A. L., Califano, J., Cairns, P., Westra, W. H., Jones, R. M., Koch, W., et al. (1996) High frequency of 16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res. 56, 3630–3633.

    CAS  PubMed  Google Scholar 

  25. El-Naggar, A. K., Lai, S., Clayman, G., Lee, J.-K. J., Luna, M. A., Goepfert, H., and Batsakis, J. G. (1997) Methylation, a major mechanism of p16/CDKN2 gene inactivation in head and neck squamous carcinoma. Am. J. Pathol. 151, 1767–1774.

    CAS  PubMed  Google Scholar 

  26. Swafford, D. S., Middleton, S. K., Palmisano, W. A., Nikula, K. J., Tesfaigzi, J., Baylin, S. B., et al. (1997) Frequent aberrant methylation of p16INK4A in primary rat lung tumors. Mol. Cell. Biol. 17, 1366–1374.

    CAS  PubMed  Google Scholar 

  27. Wong, D. J., Barret, M. T., Stöger, R., Emond, M. J., and Reid, B. J. (1997) p16INK4A promoter is hypermethylated at high frequency in esophageal adenocarcinomas. Cancer Res. 57, 2619–2622.

    CAS  PubMed  Google Scholar 

  28. Martinez-Delgado, B., Fermandez-Piqueras, J., Garcia, M. J., Arranz, E., Gallego, J., Robledo, M., and Benitez, J. (1997) hypermethylation of a 5' CpG island of p16 is a frequent event in non-Hodgkin’s lymphoma. Leukemia 11, 425–428.

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalgo, M. L., Hayashida, T., Bender, C. M., Pao, M. M., Tsai, Y. C., Gonzales, F. A., et al. (1998) The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines. Cancer Res. 58, 1245–1252.

    CAS  PubMed  Google Scholar 

  30. Foster, S. A., Wong, D. J., Barrett, M. T., and Galloway, D. A. (1998) Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol. Cell. Biol. 18, 1793–1801.

    CAS  PubMed  Google Scholar 

  31. Foster, S. A. and Galloway, D. A. (1996) Human papillomavirus type 16 E7 alleviates a proliferation block in early passage human mammary epithelial cells. Oncogene 12, 1773–1779.

    CAS  PubMed  Google Scholar 

  32. Belinsky, S. A., Nikula, K. J., Palmisano, W. A., Michels, R., Saccomanno, G., Gabrielson, E., et al. (1998) Aberrant methylation of p16INK4a is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl. Acad. Sci. USA 95, 11891–11896.

    Article  CAS  PubMed  Google Scholar 

  33. Razin, A. and Cedar, H. (1991) DNA methylation and gene expression. Microbiol. Rev. 55, 451–458.

    CAS  PubMed  Google Scholar 

  34. Stöger, R., Kubicka, P., Liu, C.-G., Kafri, T., Razin, A., Cedar, H., and Barlow, D. P. (1993) Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71.

    Article  PubMed  Google Scholar 

  35. Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827–1831.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, R. Y.-H., Gehrke, C. W., and Ehrlich, M. (1980) Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res. 8, 4777–4790.

    Article  CAS  PubMed  Google Scholar 

  37. Herman, J. G., Graf, J. R., Myöhänen, S., Nelkin, B. D., and Baylin, S. B. (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826.

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalgo, M. L. and Jones, P. A. (1997) Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 25, 2529–2531.

    Article  CAS  PubMed  Google Scholar 

  39. Feil, R., Charlton, J., Bird, A. P., Walter, J., and Reik, W. (1994) Methylation analysis on individual chromosomes: improved protocol for bisulphite genomic sequencing. Nucleic Acids Res. 22, 695–696.

    Article  CAS  PubMed  Google Scholar 

  40. Schanke, J. T., Quam, L. M., and Van Ness, B. G. (1994) An improved method for detection of 5-methylcytosine by PCR-based genomic sequencing. BioTechniques 16, 416–417.

    Google Scholar 

  41. Raizis, A. M., Schmitt, F., and Jost, J.-P. (1995) A bisulfite method of 5-methylcytosine mapping that minimizes template degradation. Analyt. Biochem. 226, 161–166.

    Article  CAS  PubMed  Google Scholar 

  42. Grigg, G. W. (1996) Sequencing 5-methylcytosine residues by the bisulfite method. DNA Sequence 6, 189–198.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Lilischkis, R., Kneitz, H., Kreipe, H. (2001). Methylation Analysis of CpG Islands. In: Brooks, S.A., Schumacher, U. (eds) Metastasis Research Protocols. Methods in Molecular Medicine, vol 57. Humana Press. https://doi.org/10.1385/1-59259-136-1:271

Download citation

  • DOI: https://doi.org/10.1385/1-59259-136-1:271

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-610-9

  • Online ISBN: 978-1-59259-136-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics