Skip to main content

Small Conductance Calcium-Activated Potassium Channels in Rat Brain

Autoradiographic Localization Using Two Specific Toxins, Apamin and Scyllatoxin

  • Protocol
  • 536 Accesses

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Calcium-dependent potassium channels (KCa channels) are involved in numerous physiological processes such as neurosecretion, action potential, and regulation of repetitive activity (1,2). As regards to their biophysical and pharmacological properties, KCa channels can be divided into three groups called BKCa, IKCa, and SKCa channels.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Vergara, C., Latorre, R., Marrion, N. V., and Adelman, J. P. (1998) Calciumactivated potassium channels. Curr. Opin. Neurobiol. 8(3), 321–329.

    Article  PubMed  CAS  Google Scholar 

  2. Sah, P. (1996) Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci. 19(4), 150–154.

    Article  PubMed  CAS  Google Scholar 

  3. Marty, A. (1989) The physiological role of calcium-dependent channels. Trends Neurosci. 12(11), 420–424.

    Article  PubMed  CAS  Google Scholar 

  4. Romey, G. and Lazdunski, M. (1984) The coexistence in rat muscle cells of two distinct classes of Ca2+-dependent K+ channels with different pharmacological properties and different physiological functions. Biochem. Biophys. Res. Commun. 118, 669–674.

    Article  PubMed  CAS  Google Scholar 

  5. Latorre, R. (1986) Ion channel reconstitution, in The Large Calcium-Activated Potassium Channel (Miller, ed.), Plenum, New York, pp. 431–467.

    Google Scholar 

  6. Gimenez-Gallego, G., Navia, M. A., Reuben, J. P., Katz, G. M., Kaczorowski, G. J., and Garcia, M. L. (1988) Purification, sequence, and model structure of charybdotoxin, a potent selective inhibitor of calcium-activated potassium channels. Proc. Natl. Acad. Sci. USA 85(10), 3329–3333.

    Article  PubMed  CAS  Google Scholar 

  7. McKinnon, R. and Miller, C. (1988) Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel. J. Gen. Physiol. 91, 335–349.

    Article  Google Scholar 

  8. Galvez, A., Gimenez-Gallego, G., Reuben, J. P., Roy-Contancin, L., Feigenbaum, P., Kaczorowski, G. J., and Garcia, M. L. (1990) Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J. Biol. Chem. 265(19), 11,083–11,090.

    PubMed  CAS  Google Scholar 

  9. Viana, F., Bayliss, D. A., and Berger, A. J. (1993) Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons. J. Neurophysiol. 69(6), 2150–2163.

    PubMed  CAS  Google Scholar 

  10. Kohler, M., Hirschberg, B., Bond, C. T., Kinzie, J. M., Marrion, N. V., Maylie, J., and Adelman, J. P. (1996) Small-conductance, calcium-activated potassium channels from mammalian brain [see comments]. Science 273(5282), 1709–1714.

    Article  PubMed  CAS  Google Scholar 

  11. Grinstein, S., Dupre, A., and Rothstein, A. (1982) Volume regulation by human lymphocytes. Role of calcium. J. Gen. Physiol. 79(5), 849–868.

    Article  PubMed  CAS  Google Scholar 

  12. Ishii, T. M., Silvia, C., Hirschberg, B., Bond, C. T., Adelman, J. P., and Maylie, J. (1997) A human intermediate conductance calcium-activated potassium channel. Proc. Natl. Acad. Sci. USA 94(21), 11,651–11,656.

    Article  PubMed  CAS  Google Scholar 

  13. Morris, A. P., Gallacher, D. V., and Lee, J. A. (1986) A large conductance, voltage-and calcium-activated K+ channel in the basolateral membrane of rat enterocytes. FEBS Lett. 206(1), 87–92.

    Article  PubMed  CAS  Google Scholar 

  14. Castle, N. A. and Strong, P. N. (1986) Identification of two toxins from scorpion (Leiurus quinquestriatus) venom which block distinct classes of calciumactivated potassium channel. FEBS Lett. 209(1), 117–121.

    Article  PubMed  CAS  Google Scholar 

  15. Joiner, W. J., Wang, L. Y., Tang, M. D., and Kaczmarek, L. K. (1997) hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc. Natl. Acad. Sci. USA 94(20), 11,013–11,018.

    Article  PubMed  CAS  Google Scholar 

  16. Blatz, A. L. and Magleby, K. L. (1986) Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323(6090), 718–720.

    Article  PubMed  CAS  Google Scholar 

  17. Maruyama, Y., Gallacher, D. V., and Petersen, O. H. (1983) Voltage and Ca2+-activated K+ channel in baso-lateral acinar cell membranes of mammalian salivary glands. Nature 302(5911), 827–829.

    Article  PubMed  CAS  Google Scholar 

  18. Sah, P. and McLachlan, E. M. (1991) Ca(2+)-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca(2+)-activated Ca2+ release. Neuron 7(2), 257–264.

    Article  PubMed  CAS  Google Scholar 

  19. Lancaster, B. and Adams, P. R. (1986) Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J. Neurophysiol. 55(6), 1268–1282.

    PubMed  CAS  Google Scholar 

  20. Schwindt, P. C., Spain, W. J., and Crill, W. E. (1992) Effects of intracellular calcium chelation on voltage-dependent and calcium-dependent currents in cat neocortical neurons. Neuroscience 47(3), 571–578.

    Article  PubMed  CAS  Google Scholar 

  21. Lorenzon, N. M. and Foehring, R. C. (1992) Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J. Neurophysiol. 67(2), 350–363.

    PubMed  CAS  Google Scholar 

  22. Vincent, J.-P., Schweitz, H., and Lazdunski, M. (1975) Structure-function relationships and site of action of apamin, a neurotoxic polypeptide of bee venom with an action on the central nervous system. Biochemistry 14, 2081–2091.

    Article  PubMed  Google Scholar 

  23. Hugues, M., Duval, D., Kitabgi, P., Lazdunski, M., and Vincent, J.-P. (1982) Preparation of a pure monoiodo-derivative of the bee venom neurotoxin apamin and its binding properties to rat brain synaptosomes. J. Biol. Chem. 257, 2762–2769.

    PubMed  CAS  Google Scholar 

  24. Labbe-Jullie, C., Granier, C., Albericio, F., Defendini, M. L., Ceard, B., Rochat, H., and Van Rietschoten, J. (1991) Binding and toxicity of apamin. Characterization of the active site. Eur. J. Biochem. 196(3), 639–645.

    Article  PubMed  CAS  Google Scholar 

  25. Hugues, M., Duval, D., Schmid, H., Kitabgi, P., Lazdunski, M., and Vincent, J.-P. (1982) Specific binding and pharmacological interactions of apamin, the neurotoxin from bee venom, with guinea pig colon. Life Sci. 31, 437–443.

    Article  PubMed  CAS  Google Scholar 

  26. Hugues, M., Schmid, H., Romey, G., Duval, D., Frelin, C., and Lazdunski, M. (1982) The Ca2+ dependent slow K+ conductance in cultured rat muscle cells: characterization with apamin. EMBO J. 1, 1039–1042.

    PubMed  CAS  Google Scholar 

  27. Seagar, M. J., Deprez, P., Martin-Moutot, N., and Couraud, F. (1987) Detection and photoaffinity labelling of the Ca2+-activated K+ channelassociated apamin receptor in cultured astrocytes from rat brain. Brain Res. 411(2), 226–230.

    Article  PubMed  CAS  Google Scholar 

  28. Wu, K., Carlin, R., Sachs, L., and Siekevitz, P. (1985) Existence of a Ca2+-dependent K+ channel in synaptic membrane and postsynaptic density fractions isolated from canine cerebral cortex and cerebellum, as determined by apamin binding. Brain Res. 360(1-2), 183–194.

    Article  PubMed  CAS  Google Scholar 

  29. Schmid-Antomarchi, H., Hugues, M., and Lazdunski, M. (1986) Properties of the apamin-sensitive Ca2+-activated K+ channel in PC12 pheochromocytoma cells which hyper-produce the apamin receptor. J. Biol. Chem. 261, 8633–8637.

    PubMed  CAS  Google Scholar 

  30. Auguste, P., Hugues, M., Borsotto, M., Thibault, J., Romey, G., Coppola, T., and Lazdunski, M. (1992) Characterization and partial purification from pheochromocytoma cells of an endogenous equivalent of Scyllatoxin, a scorpion toxin which blocks small conductance Ca2+-activated K+ channels. Brain Res. 599, 230–236.

    Article  PubMed  CAS  Google Scholar 

  31. Castle, N. and Strong, P. (1986) Identification of two toxins from scorpion (Leiurus quinquestriatus) venom which block distinct classes of calcium-activated potassium channel. FEBS Lett. 209, 117–121.

    Article  PubMed  CAS  Google Scholar 

  32. Auguste, P., Hugues, M., Grave, B., Gesquiere, J. C., Maes, P., Tartar, A., Romey, G., Schweitz, H., and Lazdunski, M. (1990) Leiurotoxin I (scyllatoxin), a peptide ligand for Ca2(+)-activated K+ channels. Chemical synthesis, radiolabelling, and receptor characterization. J. Biol. Chem. 265(8), 4753–4759.

    PubMed  CAS  Google Scholar 

  33. Auguste, P., Hugues, M., Mourre, C., Moinier, D., Tartar, A., and Lazdunski, M. (1992) Scyllatoxin, a blocker of Ca(2+)-activated K+ channels: structurefunction relationships and brain localization of the binding sites. Biochemistry 31(3), 648–654.

    Article  PubMed  CAS  Google Scholar 

  34. Deschaux, O., Bizot, J. C., and Goyffon, M. (1997) Apamin improves learning in an object recognition task in rats. Neurosci. Lett. 222(3), 159–162.

    Article  PubMed  CAS  Google Scholar 

  35. Messier, C., Mourre, C., Bontempi, B., Sif, J., Lazdunski, M., and Destrade, C. (1991) Effect of apamin, a toxin that inhibits Ca(2+)-dependent K+ channels, on learning and memory processes. Brain Res. 551(1-2), 322–326.

    Article  PubMed  CAS  Google Scholar 

  36. Heurteaux, C., Messier, C., Destrade, C., and Lazdunski, M. (1993) Memory processing and apamin induce immediate early gene expression in mouse brain. Brain Res. Mol. Brain. Res. 18(1-2), 17–22.

    Article  PubMed  CAS  Google Scholar 

  37. Gandolfo, G., Schweitz, H., Lazdunski, M., and Gottesmann, C. (1996) Sleep cycle disturbances induced by Apamin, a selective blocker of Ca2+-activated K+ channels. Brain Res. 736, 344–347.

    Article  PubMed  CAS  Google Scholar 

  38. Ishii, T. M., Maylie, J., and Adelman, J. P. (1997) Determinants of apamin and d-tubocurarine block in SK potassium channels. J. Biol. Chem. 272(37), 23,195–23,200.

    Article  PubMed  CAS  Google Scholar 

  39. Schmid-Antomarchi, H., Renaud, J. F., Romey, G., Hugues, M., Schmid, A., and Lazdunski, M. (1985) The all-or-none role of innervation in expression of apamin receptor and of apamin-sensitive Ca2+-activated K+ channel in mammalian skeletal muscle. Proc. Natl. Acad. Sci. USA 82(7), 2188–2191.

    Article  PubMed  CAS  Google Scholar 

  40. Renaud, J. F., Desnuelle, C., Schmid-Antomarchi, H., Hugues, M., Serratrice, G., and Lazdunski, M. (1986) Expression of apamin receptor in muscles of patients with myotonic muscular dystrophy. Nature 319(6055), 678–680.

    Article  PubMed  CAS  Google Scholar 

  41. Behrens, M. I., Jalil, P., Serani, A., Vergara, F., and Alvarez, O. (1994) Possible role of apamin-sensitive K+ channels in myotonic dystrophy. Muscle Nerve 17(11), 1264–1270.

    Article  PubMed  CAS  Google Scholar 

  42. Harley, H. G., Rundle, S. A., Reardon, W., Myring, J., Crow, S., Brook, J. D., et al. (1992) Unstable DNA sequence in myotonic dystrophy. Lancet 339(8802), 1125–1128.

    Article  PubMed  CAS  Google Scholar 

  43. Abita, J. P., Chicheportiche, R., Schweitz, H., and Lazdunski, M. (1977) Effects of neurotoxins (veratridine, sea anemone toxin, tetrodotoxin) on transmitter accumulation and release by nerve terminals in vitro. Biochemistry 16(9), 1838–1844.

    Article  PubMed  CAS  Google Scholar 

  44. Hartree, E. F. (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48(2), 422–427.

    Article  PubMed  CAS  Google Scholar 

  45. Mourre, C., Hugues, M., and Lazdunski, M. (1986) Quantitative autoradiographic mapping in rat brain of the receptor of apamin, a polypeptide toxin specific for one class of Ca2+-dependent K+ channels. Brain Res. 382, 239–249.

    Article  PubMed  CAS  Google Scholar 

  46. Fosset, M., Schmid-Antomarchi, H., Hugues, M., Romey, G., and Lazdunski, M. (1984) The presence in pig brain of an endogenous equivalent of apamin, the bee venom peptide that specifically blocks Ca2+-dependent K+ channels. Proc. Natl. Acad. Sci. USA 81, 7228–7232.

    Article  PubMed  CAS  Google Scholar 

  47. Lancaster, B., Nicoll, R. A., and Perkel, D. J. (1991) Calcium activates two types of potassium channels in rat hippocampal neurons in culture. J. Neurosci. 11(1), 23–30.

    PubMed  CAS  Google Scholar 

  48. Pedarzani, P. and Storm, J. F. (1996) Evidence that Ca/calmodulin-dependent protein kinase mediates the modulation of the Ca2+-dependent K+ current, IAHP, by acetylcholine, but not by glutamate, in hippocampal neurons. Pflugers Arch. 431(5), 723–728.

    PubMed  CAS  Google Scholar 

  49. Lancaster, B. and Zucker, R. S. (1994) Photolytic manipulation of Ca2+ and the time course of slow, Ca(2+)-activated K+ current in rat hippocampal neurones. J. Physiol. 475(2), 229–239.

    PubMed  CAS  Google Scholar 

  50. Sah, P. and McLachlan, E. M. (1992) Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons. J. Neurophysiol. 68(5), 1834–1841.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Borsotto, M. (2001). Small Conductance Calcium-Activated Potassium Channels in Rat Brain. In: Lopatin, A.N., Nichols, C.G. (eds) Ion Channel Localization. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-118-3:75

Download citation

  • DOI: https://doi.org/10.1385/1-59259-118-3:75

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-833-2

  • Online ISBN: 978-1-59259-118-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics