Skip to main content

Localizing Ion Channels with Scanning Probe Microscopes: A Perspective

  • Protocol
Ion Channel Localization

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

It is now widely appreciated in cell biology that there are two significant modes, beyond synthesis and degradation, by which the cell can regulate its enzymes: covalent modification and subcellular localization. The former mode may be studied with isolated components, and so may be investigated, to great detail, under a variety of well-controlled conditions. However, the localization of proteins must be studied within the context of the more complicated environment of a cell, and as such, is much more technically challenging. Clear examples of the importance of the subcellular location of proteins on the proper functioning of a cell is well-known in the membrane channel field, with the clusters of channels in the opposing membranes of a synapse or the aggregates of channels within the nodes of Ranvier. However, as studies of rafts (domains within the plasma-membrane-enriched in selected lipids and proteins [1]) have demonstrated, active control of the spatial distribution of membrane proteins, lipids, and cytosolic components at the level of the plasma membrane is likely to be a general mechanism underlying many cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown, D. A. and London, E. (1998) Functions of lipid rafts in biological membranes. Annu. Rev. Cell Devel. Biol. 14, 111–136.

    Article  CAS  Google Scholar 

  2. Hansma, H. G. and Pietrasanta, L. (1998) Atomic force microscopy and other scanning probe microscopies. Curr. Opin. Chem. Biol. 2, 579–584.

    Article  PubMed  CAS  Google Scholar 

  3. Shao, Z., Mou, J., Czajkowsky, D. M., Yang, J., and Yuan, J.-Y. (1996) Biological atomic force microscopy: what is achieved and what is needed. Adv. Phys. 45, 1–86.

    Article  CAS  Google Scholar 

  4. Binnig, G., Quate, C. F., and Gerber, Ch. (1986) Atomic force microscope. Phys. Rev. Lett. 56, 930–933.

    Article  PubMed  Google Scholar 

  5. Linder, A., Weiland, U., and Apell, H.-J. (1999) Novel polymer substrates for SFM investigations of living cells, biological membranes, and proteins. J. Struct. Biol. 126, 16–26.

    Article  PubMed  CAS  Google Scholar 

  6. Scheuring, S., Müller, D. J., Ringler, P., Heymann, J. B., and Engel, A. (1999) Imaging streptavidin 2D crystals on biotinylated lipid monolayers at high resolution with the atomic force microscope. J. Microsc. 193, 28–35.

    Article  PubMed  CAS  Google Scholar 

  7. Kowalewski, T. and Holtzman, D. M. (1999) In situ atomic force microscopy of Alzheimer’s β-amyloid peptide on different substrates: new insights into the mechanism of β-sheet formation. Proc. Natl. Acad. Sci. USA 96, 3688–3693.

    Article  PubMed  CAS  Google Scholar 

  8. Karrasch, S., Dolder, M., Schabert, F., Ramsden, J., and Engel, A. (1993) Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys. J. 65, 2437–2446.

    Article  PubMed  CAS  Google Scholar 

  9. Czajkowsky, D. M., Iwamoto, H., Cover, T. L., and Shao, Z. (1999) The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc. Natl. Acad. Sci. USA 96, 2001–2006.

    Article  PubMed  CAS  Google Scholar 

  10. Engel, A., Lyubchenko, Y., and Müller, D. (1999) Atomic force microscopy: a powerful tool to observe biomolecules at work. Trends Cell Biol. 9, 77–80.

    Article  PubMed  CAS  Google Scholar 

  11. Czajkowsky, D. M. and Shao, Z. (1998) Submolecular resolution of single macromolecules with atomic force microscopy. FEBS Lett. 430, 51–54.

    Article  PubMed  CAS  Google Scholar 

  12. Rotsch, C., Jacobson, K., and Radmacher, M. (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl. Acad. Sci. USA 96, 921–926.

    Article  PubMed  CAS  Google Scholar 

  13. Damjanovich, S., Vereb, G., Schaper, A., Jenei, A., Matho, J., Pascual Starink, J. P., et al. (1995) Structural hierarchy in the clustering of HLA class I molecules in the plasma membrane of human lymphoblastoid cells. Proc. Natl. Acad. Sci. USA 92, 1122–1126.

    Article  PubMed  CAS  Google Scholar 

  14. Jenei, A., Varga, S., Bene, L., Matyus, L., Bodnar, A., Bacso, Z., et al. (1997) HLA class I and II antigens are partially co-clustered in the plasma membrane of human lymphoblastoid cells. Proc. Natl. Acad. Sci. USA 94, 7269–7274.

    Article  PubMed  CAS  Google Scholar 

  15. Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016.

    Article  PubMed  CAS  Google Scholar 

  16. Schenider, S. W., Sritharan, K. C., Geibel, J. P., Oberleithner, H., and Jena, B. P. (1997) Surface dynamics in living acinar cells imaged by atomic force microscopy: Identification of plasma membrane structures involved in exocytosis. Proc. Natl. Acad. Sci. USA 94, 316–321.

    Article  Google Scholar 

  17. Darnell, J., Lodish, H., and Baltimore, D. (1990) Molecular Cell Biology. Scientific American Books, Inc., NY.

    Google Scholar 

  18. Putman, C. A., van der Wert, K. O., de Grooth, B. G., van Hulst, N. F., and Greve, J. (1994) Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys. J. 67, 1749–1753.

    Article  PubMed  CAS  Google Scholar 

  19. Zhong, Q., Inniss, D., Kjoller, K., and Elings, V. B. (1993) Fractured polymer/ silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. Lett. 290, L688–L692.

    Article  CAS  Google Scholar 

  20. Hansma, P. K., Cleveland, J. P., Radmacher, M., Walters, D. A., Hillner, P. E., Bezanilla, M., et al. (1994) Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64, 1738–1740.

    Article  CAS  Google Scholar 

  21. Lantz, M. A., O’Shea, S. J., and Welland, M. E. (1994) Force microscopy imaging in liquids using ac techniques. Appl. Phys. Lett. 65, 409–411.

    Article  CAS  Google Scholar 

  22. Han, W., Mou, J., Sheng, J., Yang, J., and Shao, Z. (1995) Cryo atomic force microscopy: a new approach for biological imaging at high resolution. Biochemistry 34, 8215–8220.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang, Y. Y., Sheng, S., and Shao, Z. (1996) Imaging biological structures with the cryo atomic force microscope. Biophys. J. 71, 2168–2176.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang, Y. Y., Shao, Z., Somlyo, A. P., and Somlyo, A. V. (1997) Cryo-atomic force microscopy of smooth muscle myosin. Biophys. J. 72, 1308–1318.

    Article  PubMed  CAS  Google Scholar 

  25. Boal, D. H. and Boey, S. K. (1995) Barrier-free path of directed protein motion in the erythrocyte plasma membrane. Biophys. J. 69, 372–379.

    Article  PubMed  CAS  Google Scholar 

  26. Hafner, J. H., Cheung, C. L., and Lieber, C. M. (1999) Growth of nanotubes for probe microscopy tips. Nature 398, 761,762.

    Article  CAS  Google Scholar 

  27. Hafner, J. H., Cheung, C. L., and Lieber, C. M. (1999) Direct growth of singlewalled carbon nanotube scanning probe microscopy tips. J. Am. Chem. Soc. 121, 9750,9751.

    Article  CAS  Google Scholar 

  28. Cai, M. and Jordan, P. C. (1990) How does vestibule surface charge affect ion conductivity and toxin binding in a sodium channel? Biophys. J. 57, 883–891.

    Article  PubMed  CAS  Google Scholar 

  29. Adcock, C., Smith, G. R., and Sanson, M. S. P. (1998) Electrostatics and the ion selectivity of ligand-gated channels. Biophys. J. 75, 1211–1222.

    Article  PubMed  CAS  Google Scholar 

  30. Hoh, J. H., Revel, J.-P., and Hansma, P. K. (1992) Tip-sample interaction in atomic force microscopy: I. Modulating adhesion between silicon nitride and glass. Nanotechnology 2, 119–122.

    Article  Google Scholar 

  31. Czajkowsky, D. M., Allen, M. J., Elings, V., and Shao, Z. (1998) Direct visualization of surface charge in aqueous solution. Ultramicrosccopy 74, 1–5.

    Article  CAS  Google Scholar 

  32. Heinz, W. F. and Hoh, J. H. (1999) Relative surface charge density mapping with the atomic force microscope. Biophys. J. 76, 528–538.

    Article  PubMed  CAS  Google Scholar 

  33. Hinterdorfer, P., Baumbartner, W., Gruber, H. J., Schilcher, K., and Schindler, H. (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 3477–3481.

    Article  PubMed  CAS  Google Scholar 

  34. Raab, A., Han, W., Badt, D., Smith-Gill, S. J., Lindsay, S. M., Schindler, H., and Hinterdorfer, P. (1999) Antibody recognition imaging by force microscopy. Nature Biotech. 17, 902–905.

    CAS  Google Scholar 

  35. Florin, E.-L., Moy, V. T., and Gaub, H. E. (1994) Adhesion forces between individual ligand-receptor pairs. Science 264, 415–417.

    Article  PubMed  CAS  Google Scholar 

  36. Moy, V. T., Florin, E.-L., and Gaub, H. E. (1994) Intermolecular forces and energies between ligands and receptors. Science 266, 257–259.

    Article  PubMed  CAS  Google Scholar 

  37. Lee, G. U., Chrisey, L. A., and Colton, R. J. (1994) Direct measurement of the forces between complementary strands of DNA. Science 266, 771–773.

    Article  PubMed  CAS  Google Scholar 

  38. Dammer, U., Popescu, O., Wagner, P., Anselmetti, D., Güntherodt, H.-J., and Misevic, G. N. (1995) Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science 267, 1173–1175.

    Article  PubMed  CAS  Google Scholar 

  39. Boland, T. and Ratner, B. D. (1995) Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. Proc. Natl. Acad. Sci. USA 92, 5297–5301.

    Article  PubMed  CAS  Google Scholar 

  40. Betzig, E. and Chichester, R. J. (1993) Single molecules observed by near field scanning optical microscopy. Science 262, 1422–1425.

    Article  PubMed  CAS  Google Scholar 

  41. Zenhausern, F., Martin, Y., and Wickramasinghe, H. K. (1995) Scanning interferometric apertureless microscopy: optical imaging at 10 Ängstrom resolution. Science 269, 1083–1085.

    Article  PubMed  CAS  Google Scholar 

  42. Hwang, J., Gheber, L. A., Margolis, L., and Edidin, M. (1998) Domains in cell plasma membranes investigated by near-field scanning optical microscopy. Biophys. J. 74, 2184–2190.

    Article  PubMed  CAS  Google Scholar 

  43. Enderle, Th., Ha, T., Ogletree, D. F., Chemla, D. S., Magowan, C., and Weiss, S. (1997) Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dualcolor near-field scanning optical microscopy. Proc. Natl. Acad. Sci. USA 94, 520–525.

    Article  PubMed  CAS  Google Scholar 

  44. Proksch, R., Lal, R., Hansma, P. K., Morse, D., and Stucky, G.(1996) Imaging the internal and external structure of membranes in fluid: TappingMode scanning ion conductance microscopy. Biophys. J. 71, 2155–2157.

    Article  PubMed  CAS  Google Scholar 

  45. Korchev, Y. E., Bashford, C. L., Milovanovic, M., Vodyanoy, I., and Lab, M. J. (1997) Scanning ion conductance microscopy of living cells. Biophys. J. 73, 653–658.

    Article  PubMed  CAS  Google Scholar 

  46. University of Virginia Patent Foundation

    Google Scholar 

  47. Vickery, S. A. and Dunn, R. C. (1999) Scanning near-field fluorescence resonance energy transfer microscopy. Biophys. J. 76, 1812–1818.

    Article  PubMed  CAS  Google Scholar 

  48. Albillos, A., Dernick, G., Horstmann, H., Almers, W., Detoledo, G. A., and Lindau, M. (1997) The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389, 509–512.

    Article  PubMed  CAS  Google Scholar 

  49. Viani, M. B., Schaffer, T. E., Paloczi, G. T., Pietrasanta, L. I., Smith, B. L., Thompson, J. B., et al. (1999) Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Rev. Sci. Instr. 70, 4300–4303.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Czajkowsky, D.M., Shao, Z. (2001). Localizing Ion Channels with Scanning Probe Microscopes: A Perspective. In: Lopatin, A.N., Nichols, C.G. (eds) Ion Channel Localization. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-118-3:461

Download citation

  • DOI: https://doi.org/10.1385/1-59259-118-3:461

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-833-2

  • Online ISBN: 978-1-59259-118-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics