Skip to main content

Delivering Ion Channels to Mammalian Cells by Membrane Fusion

  • Protocol
  • 540 Accesses

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Ion channels in the plasma membrane play a critical role in cellular function. These proteins are the gatekeepers that control ion homeostasis and shape excitability. Excitable cells use a variety of different ion channels to fashion their hallmark electrical signal, the action potential. Advances in molecular electrophysiology have led to the identification of more ion-channel genes than there are identified membrane currents. This excess is particularly striking with potassium channels, where a wide diversity of genes is compounded by variable levels of hetero-multimerization, alternative splicing, and post-translational modification. The classical methods of studying the roles of each gene rely either on exogenous expression in frog oocytes or pharmacological manipulation of native currents 1). Although these techniques have yielded a wealth of information concerning ion channel structure and function, they have come up short in linking individual genes and their products to physiology and disease.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

REFERENCES

  1. Hille, B. (1992) Ionic Channels of Excitable Membranes, 2nd ed. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  2. Ackerman, M. J. and Clapham, D. E. (1997) Ion channels—basic science and clinical disease. N Engl J Med 336(22), 1575–1586.

    Article  PubMed  CAS  Google Scholar 

  3. Hoffman, P. L. and Tabakoff, B. (1994) The role of the NMDA receptor in ethanol withdrawal. EXS 71, 61–70.

    PubMed  CAS  Google Scholar 

  4. Nestler, E. J., Berhow, M. T., and Brodkin, E. S. (1996) Molecular mechanisms of drug addiction: adaptations in signal transduction pathways. Mol. Psychiatry 1(3), 190–199.

    PubMed  CAS  Google Scholar 

  5. Sanguinetti, M. C., Jiang, C., Curran, M. E., and Keating, M. T. (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81(2), 299–307.

    Article  PubMed  CAS  Google Scholar 

  6. Honig, P. K., Woosley, R. L., Zamani, K., Conner, D. P., and Cantilena, L. R., Jr. (1992) Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin. Clin. Pharmacol. Ther. 52(3), 231–238.

    Article  PubMed  CAS  Google Scholar 

  7. Zhou, J. Y., Potts, J. F., Trimmer, J. S., Agnew, W. S., and Sigworth, F. J. (1991) Multiple gating modes and the effect of modulating factors on the microI sodium channel. Neuron 7(5), 775–785.

    Article  PubMed  CAS  Google Scholar 

  8. Ukomadu, C., Zhou, J., Sigworth, F. J., and Agnew, W. S. (1992) muI Na+ channels expressed transiently in human embryonic kidney cells: biochemical and biophysical properties. Neuron 8(4), 663–676.

    Article  PubMed  CAS  Google Scholar 

  9. Chang, S. Y., Satin, J., and Fozzard, H. A. (1996) Modal behavior of the mu 1 Na+ channel and effects of coexpression of the beta 1-subunit. Biophys. J. 70(6), 2581–2592.

    Article  PubMed  CAS  Google Scholar 

  10. Snyders, D. J., Tamkun, M. M., and Bennett, P. B. (1993) A rapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression. J. Gen. Physiol. 101(4), 513–543.

    Article  PubMed  CAS  Google Scholar 

  11. Ashen, M. D., O’Rourke, B., Kluge, K. A., Johns, D. C., and Tomaselli, G. F. (1995) Inward rectifier K+ channel from human heart and brain: cloning and stable expression in a human cell line. Am. J. Physiol. 268(1 Pt 2), H506–H511.

    PubMed  CAS  Google Scholar 

  12. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148), 802–805.

    Article  PubMed  CAS  Google Scholar 

  13. Marshall, J., Molloy, R., Moss, G. W., Howe, J. R., and Hughes, T. E. (1995) The jellyfish green fluorescent protein: a new tool for studying ion channel expression and function. Neuron 14(2), 211–215.

    Article  PubMed  CAS  Google Scholar 

  14. Trouet, D., Nilius, B., Voets, T., Droogmans, G., and Eggermont, J. (1997) Use of a bicistronic Gfp-expression vector to characterise ion channels after transfection in mammalian cells. Pflugers Arch. Eur. J. Physiol. 434(5), 632–638.

    Article  CAS  Google Scholar 

  15. Kawashima, E., Estoppey, D., Virginio, C., Fahmi, D., Rees, S., Surprenant, A., and North, R. A. (1998) A novel and efficient method for the stable expression of heteromeric ion channels in mammalian cells. Receptors Channels 5(2), 53–60.

    PubMed  CAS  Google Scholar 

  16. Johns, D. C., Marx, R., Mains, R. E., O’Rourke, B., and Marban, E. (1999) Inducible genetic suppression of neuronal excitability. J. Neurosci. 19(5), 1691–1697.

    PubMed  CAS  Google Scholar 

  17. Johns, D. C., Nuss, H. B., and Marban, E. (1997) Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant-negative Kv4. 2 constructs. J. Biol. Chem. 272(50), 31,598–31,3603.

    Article  PubMed  CAS  Google Scholar 

  18. Johns, D. C., Nuss, H. B., Chiamvimonvat, N., Ramza, B. M., Marban, E., and Lawrence, J. H. (1995) Adenovirus-mediated expression of a voltage-gated potassium channel in vitro (rat cardiac myocytes) and in vivo (rat liver). J. Clin. Invest. 95, 1152–1158.

    Article  Google Scholar 

  19. Nuss, H. B., Johns, D. C., Kaab, S., Tomaselli, G. F., Kass, D., Lawrence, J. H., and Marban, E. (1996) Reversal of potassium channel deficiency in cells from failing hearts by adenoviral gene transfer: a prototype for gene therapy for disorders of cardiac excitability and contractility. Gene Ther. 3(10), 900–912.

    PubMed  CAS  Google Scholar 

  20. Holt, J. R., Johns, D. C., Wang, S., Chen, Z. Y., Dunn, R. J., Marban, E., and Corey, D. P. (1999) Functional expression of exogenous proteins in mammalian sensory hair cells infected with adenoviral vectors [In Process Citation]. J. Neurophysiol. 81(4), 1881–1888.

    PubMed  CAS  Google Scholar 

  21. Ehrengruber, M. U., Lanzrein, M., Xu, Y., Jasek, M. C., Kantor, D. B., Schuman, E. M., et al. (1998) Recombinant adenovirus-mediated expression in nervous system of genes coding for ion channels and other molecules involved in synaptic function. Methods Enzymol. 293, 483–503.

    Article  PubMed  CAS  Google Scholar 

  22. Ehrengruber, M. U., Doupnik, C. A., Xu, Y., Garvey, J., Jasek, M. C., Lester, H. A., and Davidson, N. (1997) Activation of heteromeric G protein-gated inward rectifier channels overexpressed by adenovirus gene transfer inhibits the excitability of hippocampal neurons. Proc. Natl. Acad. Sci. USA 94, 7070–7075.

    Article  PubMed  CAS  Google Scholar 

  23. Harris, H., Sidebottom, E., Grace, D. M., and Bramwell, M. E. (1969) The expression of genetic information: a study with hybrid animal cells. J. Cell Sci. 4(2), 499–525.

    PubMed  CAS  Google Scholar 

  24. Frye, L. D. and Edidin, M. (1970) The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J. Cell Sci. 7(2), 319–335.

    PubMed  CAS  Google Scholar 

  25. Okada, Y. (1993) Sendai virus-induced cell fusion. Methods Enzymol. 221, 18–41.

    Article  PubMed  CAS  Google Scholar 

  26. Matsuda, R., Noro, N., and Ichimura, T. (1988) Myoblast-mediated fusioninjection: a new technique for introduction of macromolecules specifically into living skeletal muscle cells. Exp. Cell. Res. 176(2), 366–370.

    Article  PubMed  CAS  Google Scholar 

  27. Uchida, T. (1988) Introduction of macromolecules into mammalian cells by cell fusion. Exp. Cell. Res. 178(1), 1–17.

    Article  PubMed  CAS  Google Scholar 

  28. Goshima, K. and Wakabayashi, S. (1981) Inhibition of ouabain-induced arrhythmias of ouabain-sensitive myocardial cells (quail) by contact with ouabainresistant cells (mouse) and its mechanism. J. Mol. Cell Cardiol. 13(1), 75–92.

    Article  PubMed  CAS  Google Scholar 

  29. Goshima, K., Kaneko, H., Wakabayashi, S., Masuda, A., and Matsui, Y. (1984) Beating activity of heterokaryons between myocardial and non-myocardial cells in culture. Exp. Cell. Res. 151(1), 148–159.

    Article  PubMed  CAS  Google Scholar 

  30. Kaprielian, Z., Robinson, S. W., Fambrough, D. M., and Kessler, P. D. (1996) Movement of Ca(2+)-ATPase molecules within the sarcoplasmic/endoplasmic reticulum in skeletal muscle. J. Cell Sci. 109(Pt 10), 2529–2537.

    PubMed  CAS  Google Scholar 

  31. Evans, S. M., Tai, L. J., Tan, V. P., Newton, C. B., and Chien, K. R. (1994) Heterokaryons of cardiac myocytes and fibroblasts reveal the lack of dominance of the cardiac muscle phenotype. Mol. Cell Biol. 14(6), 4269–4279.

    PubMed  CAS  Google Scholar 

  32. Ahkong, Q. F., Desmazes, J. P., Georgescauld, D., and Lucy, J. A. (1987) Movements of fluorescent probes in the mechanism of cell fusion induced by poly(ethylene glycol). J. Cell Sci. 88(Pt 3), 389–398.

    PubMed  CAS  Google Scholar 

  33. Deng, Y. P. and Storrie, B. (1988) Animal cell lysosomes rapidly exchange membrane proteins [published erratum appears in Proc. Natl. Acad. Sci. USA 86(9), 3214]. Proc. Natl. Acad. Sci. USA 85(11), 3860–23864.

    Google Scholar 

  34. Deng, Y. P., Griffiths, G., and Storrie, B. (1991) Comparative behavior of lysosomes and the pre-lysosome compartment (PLC) in in vivo cell fusion experiments. J. Cell Sci. 99(Pt 3), 571–582.

    PubMed  Google Scholar 

  35. Deng, Y., DeCourcy, K., and Storrie, B. (1992) Intermixing of resident Golgi membrane proteins in rat-hamster polykaryons appears to depend on organelle coalescence. Eur. J. Cell Biol. 57(1), 1–11.

    PubMed  CAS  Google Scholar 

  36. Hoppe, U. C., Johns, D. C., Marban, E., and O’Rourke, B. (1999) Manipulation of cellular excitability by cell fusion: effects of rapid introduction of transient outward K+ current on the guinea pig action potential. Circ. Res. 84(8), 964–972.

    PubMed  CAS  Google Scholar 

  37. Johns, D. C., Nuss, H. B., and Marban, E. (1997) Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant-negative Kv4. 2 constructs. J. Biol. Chem. 272(50), 31,598–31,603.

    Article  PubMed  CAS  Google Scholar 

  38. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  39. Mitra, R. and Morad, M. (1986) Two types of calcium channels in guinea pig ventricular myocytes. Proc. Natl. Acad. Sci. USA 83(14), 5340–5344.

    Article  PubMed  CAS  Google Scholar 

  40. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391(2), 85–100.

    Article  PubMed  CAS  Google Scholar 

  41. Neher, E. (1992) Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 207, 123–131.

    Article  PubMed  CAS  Google Scholar 

  42. Näbauer, M., Beuckelmann, D. J., Uberfuhr, P., and Steinbeck, G. (1996) Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 93(1), 168–177.

    PubMed  Google Scholar 

  43. Wettwer, E., Amos, G. J., Posival, H., and Ravens, U. (1994) Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ. Res. 75(3), 473–482.

    PubMed  CAS  Google Scholar 

  44. Anyukhovsky, E. P., Sosunov, E. A., and Rosen, M. R. (1996) Regional differences in electrophysiological properties of epicardium, midmyocardium, and endocardium, in vitro and in vivo correlations. Circulation 94(8), 1981–1988.

    PubMed  CAS  Google Scholar 

  45. Liu, D. W., Gintant, G. A., and Antzelevitch, C. (1993) Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ. Res. 72(3), 671–687.

    PubMed  CAS  Google Scholar 

  46. Lukas, A. and Antzelevitch, C. (1993) Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia. Role of the transient outward current. Circulation 88(6), 2903–2915.

    PubMed  CAS  Google Scholar 

  47. Furukawa, T., Myerburg, R. J., Furukawa, N., Bassett, A. L., and Kimura, S. (1990) Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ. Res. 67(5), 1287–1291.

    PubMed  CAS  Google Scholar 

  48. Clark, R. B., Bouchard, R. A., Salinas-Stefanon, E., Sanchez-Chapula, J., and Giles, W. R. (1993) Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc. Res. 27(10), 1795–1799.

    Article  PubMed  CAS  Google Scholar 

  49. Fedida, D., Braun, A. P., and Giles, W. R. (1991) Alpha 1-adrenoceptors reduce background K+ current in rabbit ventricular myocytes. J. Physiol. (Lond.) 441, 673–684.

    CAS  Google Scholar 

  50. Beuckelmann, D. J., Näbauer, M., and Erdmann, E. (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ. Res. 73, 379–385.

    PubMed  CAS  Google Scholar 

  51. Kääb, S., Nuss, H. B., Chiamvimonvat, N. O., Rourke, B., Pak, P. H., Kass, D. A., et al. (1996) Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ. Res. 78(2), 262–273.

    PubMed  Google Scholar 

  52. Rozanski, G. J., Xu, Z., Zhang, K., and Patel, K. P.(1998) Altered K+ current of ventricular myocytes in rats with chronic myocardial infarction. Am. J. Physiol. 274(1 Pt 2), H259–H265.

    PubMed  CAS  Google Scholar 

  53. Johns, D. C., Nuss, H. B., and Marban, E. (1997) Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant-negative Kv4. 2 constructs. J. Biol. Chem. 272, 31,598–31,603.

    Article  PubMed  CAS  Google Scholar 

  54. Barry, D. M., Xu, H., Schuessler, R. B., and Nerbonne, J. M. (1998) Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 alpha subunit. Circ. Res. 83(5), 560–567.

    PubMed  CAS  Google Scholar 

  55. Antzelevitch, C., Sicouri, S., Litovsky, S. H., Lukas, A., Krishnan, S. C., Di Diego, J. M., et al. (1991) Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ. Res. 69(6), 1427–1449.

    PubMed  CAS  Google Scholar 

  56. Weidmann, S. (1970) Electrical constants of trabecular muscle from mammalian heart. J. Physiol. (Lond.) 210(4), 1041–1054.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Johns, D.C., Hoppe, U.C., Marbán, E., O’Rourke, B. (2001). Delivering Ion Channels to Mammalian Cells by Membrane Fusion. In: Lopatin, A.N., Nichols, C.G. (eds) Ion Channel Localization. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-118-3:275

Download citation

  • DOI: https://doi.org/10.1385/1-59259-118-3:275

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-833-2

  • Online ISBN: 978-1-59259-118-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics