Application of Green Fluorescent Protein to the Study of Dynamic Protein-Protein Interactions and Subcellular Trafficking of Steroid Receptors

  • Steven K. Nordeen
  • Paul R. Housley
  • Yihong Wan
  • Richard N. Day
Part of the Methods in Molecular Biology™ book series (MIMB, volume 176)


The green fluorescent protein (GFP) from the jellyfish, Aequoria victoria, converts blue light to green fluorescence when expressed in intact cells and transgenic animals, and has proven to be a powerful tool for biological and medical research. This chapter describes the application of spectrally distinguishable variants of GFP to the investigation of steroid hormone receptor action. Topics that are covered include the design of GFP-receptor chimeras, the expression of GFP-fusion proteins in cells in culture, the detection of the GFP-tagged receptors in living and fixed cells, and the use of GFP-variants to study the colocalization and interaction of steroid receptors and other proteins. Specifically, the authors describe the application of GFP-tagged steroid receptors to assess issues in receptor trafficking and receptor interaction with coactivator proteins. The latter approach employs fluorescence resonance energy transfer (FRET), a technique that effectively permits a 100-fold enhancement beyond the inherent resolving power of the light microscope.


Green Fluorescent Protein Glucocorticoid Receptor Fluorescence Resonance Energy Transfer Steroid Receptor Green Fluorescent Protein Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ward, W. W., Cody, C. W., Hart, R. C., and Cormier, M. J. (1980) Spectrophotometric identity of the energy transfer chromophores in Renilla and Aequorea green-fluorescent proteins. Photochem. Photobiol. 31, 611–615.CrossRefGoogle Scholar
  2. 2.
    Presley, J. F., Cole, N. B., Schroer, T. A., Hirschberg, K., Zaal, K.J., and Lippincott-Schwartz, J. (1997) ER-to-Golgi transport visualized in living cells. Nature 389, 81–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Aubin, J. E. (1979) Autofluorescence of viable cultured mammalian cells. J. Histochem. Cytochem. 27, 36–43.PubMedGoogle Scholar
  4. 4.
    Heim, R., Cubitt, A. B., and Tsien, R. Y. (1995) Improved green fluorescence. Nature 373, 663–664.PubMedCrossRefGoogle Scholar
  5. 5.
    Cormack, B. P., Valdivia, R. H., and Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38.PubMedCrossRefGoogle Scholar
  6. 6.
    Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnol. 14, 315–319.CrossRefGoogle Scholar
  7. 7.
    Heim, R., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12,501–12,504.PubMedCrossRefGoogle Scholar
  8. 8.
    Heim, R. and Tsien, R. Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182.PubMedCrossRefGoogle Scholar
  9. 9.
    Ellenberg, J., Lippincott-Schwartz J., and Presley, J. F. (1998) Two-color green fluorescent protein time-lapse imaging. Biotechniques 25, 838–842.PubMedGoogle Scholar
  10. 10.
    Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y. (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887.PubMedCrossRefGoogle Scholar
  11. 11.
    Dopf, J. and Horagan, T. M. (1996) Deletion mapping of Aequorea victoria green fluorescent protein. Gene 173, 39–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Lim, C. S., Baumann, C. T., Htun, H., Xian, W., Irie, M., Smith, C. L., and Hager, G. L. (1999) Differential localization and activity of the A-and B-forms of the human progesterone receptor using green fluorescent protein chimeras. Mol. Endocrinol. 13, 366–375.PubMedCrossRefGoogle Scholar
  13. 13.
    Carey, K. L., Richards, S. A., Lounsbury, K. M., and Macara, I. G. (1996) Evidence using a green fluorescent protein-glucocorticoid receptor chimera that the Ran TC4 GTPase mediates an essential function independent of nuclear protein import. J. Cell Biol. 133, 985–996.PubMedCrossRefGoogle Scholar
  14. 14.
    Htun, H., Barsony, J., Renyi, I., Gould, D. L., and Hager, G. L. (1996) Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera. Proc. Natl. Acad. Sci. USA 93, 4845–4850.PubMedCrossRefGoogle Scholar
  15. 15.
    Galigniana, M. D., Scruggs, J. L., Herrington, J., Welsh, M. J., Carter-Su, C., Housley, P. R., and Pratt, W. B. (1998) Heat shock protein 90-dependent (geldanamycin-inhibited) movement of the glucocorticoid receptor through the cytoplasm to the nucleus requires intact cytoskeleton. Mol. Endocrinol. 12, 1903–1913.PubMedCrossRefGoogle Scholar
  16. 16.
    Okamoto, K., Tanaka, H., Ogawa, H., Makino, Y., Eguchi, H., Hayashi, S., et al. (1999) Redox-dependent regulation of nuclear import of the glucocorticoid receptor. J. Biol. Chem. 274, 10,363–10,371.PubMedCrossRefGoogle Scholar
  17. 17.
    Galigniana, M. D., Housley, P. R., DeFranco, D. B., and Pratt, W. B. (1999) Inhibition of glucocorticoid receptor nucleocytoplasmic shuttling by okadaic acid requires intact cytoskeleton. J. Biol. Chem. 274, 16,222–16,227.PubMedCrossRefGoogle Scholar
  18. 18.
    Nishi, M., Takenaka, N., Morita, N., Ito, T., Ozawa, H., and Kawata, M. (1999) Real-time imaging of glucocorticoid receptor dynamics in living neurons and glial cells in comparison with non-neural cells. Eur. J. Neurosci. 11, 1927–1936.PubMedCrossRefGoogle Scholar
  19. 19.
    Strubing, C. and Clapham, D. E. (1999) Active nuclear import and export is independent of lumenal Ca2+ stores in intact mammalian cells. J. Gen. Physiol. 113, 239–248.PubMedCrossRefGoogle Scholar
  20. 20.
    Day, R. N. (1998) Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. Mol. Endocrinol. 12, 1410–1419.PubMedCrossRefGoogle Scholar
  21. 21.
    Day, R. N., Nordeen, S. K., and Wan, Y. (1999) Visualizing protein-protein interactions in the nucleus of the living cell. Mol. Endocrinol. 13, 517–526.PubMedCrossRefGoogle Scholar
  22. 22.
    Htun, H., Holth, L. T., Walker, D., Davie, J. R., and Hager, G. L. (1999) Direct visualization of the human estrogen receptor alpha reveals a role for ligand in the nuclear distribution of the receptor. Mol. Biol. Cell 10, 471–486.PubMedGoogle Scholar
  23. 23.
    Georget, V., Lobaccaro, J.M., Terouanne, B., Mangeat, P., Nicolas, J. C., and Sultan, C. (1997) Trafficking of the androgen receptor in living cells with fused green fluorescent protein-androgen receptor. Mol. Cell. Endocrinol. 129, 17–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Georget, V., Terouanne, B., Lumbroso, S., Nicolas, J. C., and Sultan, C. (1998) Trafficking of androgen receptor mutants fused to green fluorescent protein: a new investigation of partial androgen insensitivity syndrome. J. Clin. Endocrinol. Metab. 83, 3597–3603.PubMedCrossRefGoogle Scholar
  25. 25.
    Fejes-Toth, G., Pearce, D., and Naray-Fejes-Toth, A. (1998) Subcellular localization of mineralocorticoid receptors in living cells: effects of receptor agonists and antagonists. Proc. Natl. Acad. Sci. USA 95, 2973–2978.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhu, X. G., Hanover, J. A., Hager, G. L., and Cheng, S.Y. (1998) Hormoneinduced translocation of thyroid hormone receptors in living cells visualized using a receptor green fluorescent protein chimera. J. Biol. Chem. 273, 27,058–27,063.PubMedCrossRefGoogle Scholar
  27. 27.
    Racz, A. and Barsony, J. (1999) Hormone-dependent translocation of vitamin D receptors is linked to transactivation. J. Biol. Chem. 274, 19352–19360.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee, C. H., Chinpaisal, C., and Wei, L. N. (1998) Cloning and characterization of mouse RIP 140, a corepressor for nuclear orphan receptor TR2. Mol. Cell. Biol. 18, 6745–6755.PubMedGoogle Scholar
  29. 29.
    Wan, Y., Coxe, K. K., Thackray, V. G., Housley, P. R., and Nordeen, S. K. (2001) Separable features of the ligand-binding domain determine the differential subcellular localization and ligand-binding specificity of glucocorticoid receptor and progesterone receptor. Mol. Endocrinol. 15, 17–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Liu, J. and DeFranco, D. B. (1999) Chromatin recycling of glucocorticoid receptors: implications for multiple roles of heat shock protein 90. Mol. Endocrinol. 13, 355–365.PubMedCrossRefGoogle Scholar
  31. 31.
    Tyagi, R. K., Amazit, L., Lescop, P., Milgrom, E., and Guiochon-Mantel, A. (1998) Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate. Mol. Endocrinol. 12, 1684–1695.PubMedCrossRefGoogle Scholar
  32. 32.
    Hache, R. J. G., Tse, R., Reich, T., Savory, J.G.A., and Lefebvre, Y. A. (1999) Nucleocytoplasmic trafficking of steroid-free glucocorticoid receptor. J. Biol. Chem. 274, 1432–1439.PubMedCrossRefGoogle Scholar
  33. 33.
    McNally, J. G., Muller, W. G., Walker, D., Wolford, R., and Hager, G. L. (2000) The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265.PubMedCrossRefGoogle Scholar
  34. 34.
    Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and Tsien, R. Y. (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20, 448–455.PubMedCrossRefGoogle Scholar
  35. 35.
    Mitra, R. D., Silva, C. M., and Youvan, D. C. (1996) Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein Gene 173, 13–17.PubMedCrossRefGoogle Scholar
  36. 36.
    Pollok, B. A. and Heim, R. (1999) Using GFP in FRET-based applications. Trends Cell Biol. 9, 57–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Gordon, G.W., Berry, G., Liang, X. H., Levine, B., and Herman, B. (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–2713.PubMedCrossRefGoogle Scholar
  38. 38.
    Mahajan, N. and Herman, B. (1997) Alterations in the molecular interaction of Bcl-2 and Bax during apoptosis assessed using fluorescence resonance energy transfer (FRET) microscopy and green fluorescent protein (GFP-Bax and blue fluorescent protein (BFP)-Bcl-2 expressing proteins, in Proceedings of Microscopy and Microanalysis (Baily, G. W., Dimlich, R. V. W., Alexander, K.B., McCarthy, J. J., and Pretlow, T. P., eds.), vol. 3, Springer-Verlag, New York pp.135–136.Google Scholar
  39. 39.
    Periasamy, A. and Day, R. N. (1998) FRET imaging of PIT-1 protein interactions in living cells. J. Biomed. Optics 3, 154–160.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Steven K. Nordeen
    • 1
  • Paul R. Housley
    • 2
  • Yihong Wan
    • 1
  • Richard N. Day
    • 3
  1. 1.Department of Pathology and Program in Molecular BiologyUniversity of Colorado Health Sciences CenterDenver
  2. 2.Department of Pharmacology and PhysiologyUniversity of South Carolina School of MedicineColumbia
  3. 3.Departments of Medicine and Cell BiologyNational Science Foundation Center for Biological TimingUniversity of Virginia Health Sciences CenterCharlottesville

Personalised recommendations