Skip to main content

Preparation of 2-, 3-, and 4-Methylcarboxylic Acids and the Corresponding Alcohols of High Enantiopurity by Lipase-Catalyzed Esterification

  • Protocol

Part of the book series: Methods in Biotechnology ((MIBT,volume 15))

Abstract

Chiral methyl-branched carboxylic acids or the corresponding alcohols of high enantiomeric purity are valuable intermediates for the synthesis of many pharmaceuticals, pesticides, and natural substances such as phero-mones. Often, compounds of a very high enantiomeric excess (>99.5% ee) are needed. Various methyl-branched carboxylic acids have been synthesized by chemical methods such as diastereoselective alkylation of alkylamide enolates bearing a chiral auxiliary (1). However, a loss in enantiomeric excess of about 2% ee is often associated with the final hydrolytic removal of the chiral auxiliary to release the chiral alkylated acid. This has been noted, for instance, with the currently popular auxiliary pseudo-ephe-drine (2), and much work has been devoted to overcome this obstruction, albeit with limited success so far (3).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Högberg, H.-E. (1995) Alkylation of amide enolates, in Houben-Weiy Methods of Organic Chemistry, Vol. E21a, Stereoselective Synthesis (Helmchen G., Hoffmann, R. W., Mulzer, J., Schaumann, E., eds.),Thieme, Stuttgart, pp. 791–915.

    Google Scholar 

  2. Myers, A. G., Yang, B. H., Chen, H., and Gleason, J. L. (1994) Use of pseu-doephedrine as a practical chiral auxiliary for asymmetric synthesis. J. Am. Chem. Soc. 116, 9361,9362.

    Google Scholar 

  3. Myers, A. G., Yang, B. H., Chen. H., McKinstry, L., Kopecky, D. J., and Gleason, J. L. (1997) Pseudoephedrine as a practical chiral auxiliary for the synthesis of highly enantiomerically enriched carboxylic acids, alcohols, aldehydes, and ketones. J. Am. Chem. Soc. 119, 6496–6511.

    Article  CAS  Google Scholar 

  4. Edlund, H., Berglund, P., Jensen, M., Hedenström, E., and Högberg, H.-E. (1996) Resolution of 2-methylalkanoic acids. Enantioselective esterification with long chain alcohols catalysed by Candida rugosa lipase. Acta Chem. Scand. 50, 666–671.

    Article  CAS  Google Scholar 

  5. Allen, C. F. and Kalm, M. J. (1963) 2-Methylenedodecanoic acid, in Organic Syntheses, coll. vol. IV (Rabjohn, R., ed.), Wiley, New York, p. 618, Note. 2.

    Google Scholar 

  6. Sonnet, P. E. and Baillargeon, M. W. (1989) Synthesis and lipase catalyzed hydrolysis of thiolesters of 2-, 3-, and 4-methyl octanoic acids. Lipids 24, 434–437.

    Article  CAS  Google Scholar 

  7. Dinh, P. M., Williams, J. M. J., and Harris, W. (1999) Selective racemisation of esters: relevance to enzymatic hydrolysis reactions. Tetrahedron Lett. 40, 749–752.

    Article  CAS  Google Scholar 

  8. Vörde, C., Högberg, H. E., and Hedenström, E. (1996) Resolution of 2-methyl-alkanoic esters: enantioselective aminolysisby (R)-1-phenylethylamine of ethyl 2-methyloctanoate catalysed by lipase B from Candida antarctica. Tetrahedron: Asymmetry 7, 1507–1513.

    Article  Google Scholar 

  9. Stecher, H. and Faber, K. (1997) Biocatalytic deracemizationt echniques: dynamic resolutions and stereoinversions. Synthesis 1–16.

    Google Scholar 

  10. Ebbers, E. J., Ariaans, G. J. A., Houbiers, J. P. M., Bruggnink, A., and Zwanenburg, B. (1997) Controlled racemization of optically active organic compunds: prospects for asymmetric transformation. Tetrahedron 53, 9417–9476.

    Article  CAS  Google Scholar 

  11. Montero, S., Blanco, A., Virto, M. D., Landeta, L. C., Agud, I., Solozabal, R., et al. (1993) Immobilization of Candida rugosa lipase and some properties of the immobilized enzyme. Enzyme Microb. Technol. 15, 239–247.

    Article  CAS  Google Scholar 

  12. Zaks, A. and Klibanov, A. M. (1985) Enzyme-catalyzed processes in organic solvents. Proc. Natl. Acad. Sci. USA 82, 3192–3196.

    Article  CAS  Google Scholar 

  13. Valivety, R. H., Halling, P. J., Peilow, A. D., and Macrae, A. R. (1992) Lipases from different sources vary widely in dependence of catalytic activity on water activity. Biochim. Biophys. Acta 1122, 143–146.

    Article  CAS  Google Scholar 

  14. Kvittingen, L., Sjursnes, B., Halling, P., and Anthonsen, T. (1992) Mixing conditions for enzyme catalysis in organic solvents. Tetrahedron 48, 5259–5264.

    Article  CAS  Google Scholar 

  15. Laane, C., Boeren, S., Vos, K., and Veeger, C. (1987) Rules for optimization of biocatalysis inorganic solvents. Biotechnol. Bioeng. 30, 81–87.

    Article  CAS  Google Scholar 

  16. Carrea, G., Ottolina, G., and Riva, S. (1995) Role of solvents in the control of enzyme selectivity in organic media. Trends Biotechnol. 13, 63–70; erratum: (1995) Trends Biotechnol. 13, 122.

    Article  CAS  Google Scholar 

  17. Berglund, P., Holmquist, M., Hult, K., and Högberg, H.-E. (1995) Alcohols as enantio selective inhibitors in a lipase in a lipase catalysed esterification of a chiral acyl donor. Biotechnol. Lett. 17, 55–60.

    Article  CAS  Google Scholar 

  18. Berglund, P., Holmquist, M., Hedenström, E., Hult, K., and Högberg, H.-E. (1993) 2-Methylalkanoic acids resolved by esterification catalysed by lipase from Candida rugosa: alcohol chain length and enantioselectivity. Tetrahedron: Asymmetry 4, 1869–1878.

    Article  CAS  Google Scholar 

  19. Berglund, P., Vörde, C., and Högberg, H.-E. (1994) Esterification of 2-methylalkanoic acids catalysed by lipase from Candida rugosa: enantioselectivity as a function of water activity and alcohol chain length. Biocatalysis 9, 123–130.

    Article  CAS  Google Scholar 

  20. Lundh, M., Smitt, O., and Hedenström, E., (1996) Sex pheromone of pine sawflies: enantioselective lipase catalysed transesterification of erythro-3,-dimethyl-pentadecan-2-ol, diprionol. Tetrahedron: Asymmetry 7, 3277–3284.

    Article  CAS  Google Scholar 

  21. Nguyen, B.-V. and Hedenström, E. (1999) Candida rugosa lipase as an enantioselective catalyst in the esterification of methyl branched carboxylic acids: Resolution of rac-3,7-dimethyl-6-octenic acid (citronellic acid). Tetrahedron: Asymmetry 10, 1821–1826.

    Article  CAS  Google Scholar 

  22. Halling, P. J. (1992) Salt hydrates for water activity control with biocatalysis in organic media. Biotechnol. Tech. 6, 271–276.

    Article  CAS  Google Scholar 

  23. Chen, C.-S., Fujimoto, Y., Girdaukas, G., Sih, C. J. (1982) Quantitative analysis of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 104, 7294–7299.

    Article  CAS  Google Scholar 

  24. Bergström, G., Wassgren, A.-B., Anderbrant, O., Fägerhag, J., Edlund, H., Hedenström, E., et al. (1995) Sex pheromone of the pine sawfly Diprion pini (Hymenoptera: Diprionidae): chemical identification, synthesis and biological activity. Experientia 51, 370–380.

    Article  Google Scholar 

  25. Rakels, J. L. L., Straathof, A. J. J., and Heijnen, J. J. (1993) A simple method to determine the enantiomeric ration in enantioselective biocatalysis. Enzyme Microb. Technol. 15, 1051–1056.

    Article  CAS  Google Scholar 

  26. Noyce, D. S. and Denney, D. B. (1950) Steric effects and stereochemistry of lithium aluminium hydride reduction. J. Am. Chem. Soc. 72, 5743–5745.

    Article  CAS  Google Scholar 

  27. Sonnet, P. E. (1982) Synthesis of the stereoisomers of the sex pheromone of the southern corn rootworm and lesser tea tortrix. J. Org. Chem. 47, 3793–3796.

    Article  CAS  Google Scholar 

  28. Sonnet, P. E. (1987) Kinetic resolutions of aliphatic alcohols with a fungal lipase from Mucormiehei.J. Org. Chem. 52, 3477–3479.

    Article  CAS  Google Scholar 

  29. Guanti, G., Narisano, E., Podgorski, T., Thea, S., and Williams, A. (1990) Enzyme catalyzed monohydrolysis of 2-aryl-1, 3-propanediol diacetates. A study of structural effects of the aryl moiety on the enantioselectivity. Tetrahedron 46, 7081–7092.

    Article  CAS  Google Scholar 

  30. Bowers, A., Halsall, T. G., Jones, E. R. H., and Lemin, A. J. (1953) The chemistry of the triterpenes and related compounds. Part XVIII. Elucidation of the structure of polyporenic acid C. J. Chem. Soc. 2548–2560.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Berglund, P., Hedenström, E. (2001). Preparation of 2-, 3-, and 4-Methylcarboxylic Acids and the Corresponding Alcohols of High Enantiopurity by Lipase-Catalyzed Esterification. In: Vulfson, E.N., Halling, P.J., Holland, H.L. (eds) Enzymes in Nonaqueous Solvents. Methods in Biotechnology, vol 15. Humana Press. https://doi.org/10.1385/1-59259-112-4:307

Download citation

  • DOI: https://doi.org/10.1385/1-59259-112-4:307

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-929-2

  • Online ISBN: 978-1-59259-112-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics