Skip to main content

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 37))

Abstract

The first research that focused on the effects of pulsed electric fields on living cells described the phenomena of reversible and irreversible membrane breakdown in an in vitro environment in the 1960s and 1970s (16). This early research led to the current understanding that exposing cells to intense electric fields induces a transmembrane potential that is superposed on the resting potential. Induced potentials of sufficient magnitude cause a dielectric breakdown of the membrane. This physical phenomenon was termed electroporation, or electropermeabilization, because it was observed that molecules that do not normally pass through the membrane gain intracellular access after the cells were treated with electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coster, H. G. L. (1965) A quantitative analysis of the voltage-current relationships of fixed charge membranes and the associated property of “punch-through.” Biophys. J. 5, 669–686.

    Article  PubMed  CAS  Google Scholar 

  2. Sale, A. J. H. and Hamilton, W. A. (1967) Effects of high electric fields on microorganisms. I. Killing of bacteria and yeasts. Biochem. Biophys. Acta 148, 781–788.

    Google Scholar 

  3. Sale, A. J. H. and Hamilton, W. A. (1968) Effects of high electric fields on microorganisms II. lysis of erythrocytes and protoplasts. Biochem. Biophys. Acta 163, 37–43.

    Article  PubMed  CAS  Google Scholar 

  4. Pohl, H. A. and Crane, J. S. (1971) Dielectrophoresis of cells. Biophys. J. 11, 711–727.

    Article  PubMed  CAS  Google Scholar 

  5. Crowley, J. M. (1973) Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophys. J. 13, 711–724.

    Article  PubMed  CAS  Google Scholar 

  6. Zimmermann, U., Pilwat, G., and Friemann, F. (1974) Dielectric breakdown of cell membranes. Biophys. J. 14, 881–899.

    Article  PubMed  CAS  Google Scholar 

  7. Prausnitz, M. R., Lau, B. S., Milano, C. D., Conner, S., Langer, R., and Weaver, J. C. (1993) A quantitative study of electroporation showing a plateau in net molecular transport. Biophys. J. 65, 414–422.

    Article  PubMed  CAS  Google Scholar 

  8. Hibino, M., Shigemori, M., Itoh, M., Hagayama, K., and Kinosita, K. (1991) Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys. J. 59, 209–220.

    Article  PubMed  CAS  Google Scholar 

  9. Chang, D. C. and Reese, T. S. (1990) Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys. J. 58, 1–12.

    Article  PubMed  CAS  Google Scholar 

  10. Neumann, E., Sowers, A. E., and Jordan, D. A. (1989) Electroporation and Electrofusion in Cell Biology. Plenum, New York.

    Google Scholar 

  11. Teissié, J. and Rols, M. P. (1992) Time course of electropermeabilization. In: Charge and Field Effects in Biosystems, Vol. 3 (Allen, M. J., Cleary, S. F., Sowers, A. E., and Shillady, D., eds.) Birkhauser, Boston, pp. 285–301.

    Google Scholar 

  12. Foung, S. K. H. and Perkins, S. (1989) Electric field-induced cell fusion and human monoclonal antibodies. J. Immunol. Methods 116, 117–122.

    Article  PubMed  CAS  Google Scholar 

  13. Lo, M. M. S., Tsong, T. Y., Conrad, M. K., Strittmatter, S. M., Hester, L. D., and Snyder, S. H. (1984) Monoclonal antibody production by receptor-mediated electrically induced cell fusion. Nature 310, 792–794.

    Article  PubMed  CAS  Google Scholar 

  14. Teissié, J., Knutson, V. P., Tsong, T. Y., and Lane, M. D. (1982) Electric pulseinduced fusion of 3T3 cells in monolayer culture. Science 216, 537–538.

    Article  PubMed  Google Scholar 

  15. Jaroszeski, M. J., Gilbert, R., Fallon, P. G., and Heller, R. (1994) Mechanically facilitated cell-cell electrofusion. Biophys. J. 67, 1574–1581.

    Article  PubMed  CAS  Google Scholar 

  16. Heller, R. and Grasso, R. J. (1990) Transfer of human membrane surface components by incorporating human cells into intact animal tissue by cell-tissue electrofusion in vivo. Biochem. Biophys. Acta 1024, 185–188.

    Article  PubMed  CAS  Google Scholar 

  17. Grasso, R. J., Heller, R., Cooley, J. R., and Haller, E. M. (1989) Electrofusion of individual animal cells directly to intact corneal epithelial tissue. Biochem. Biophys. Acta 980, 9–14.

    Article  PubMed  CAS  Google Scholar 

  18. Mouneimne, Y., Pierre-Francois, T., Barhoumi, R., and Nicolau, C. (1991) Electroinsertion of xeno proteins in red blood cell membranes yields a long lived protein carrier in circulation. Biochim. Biophys. Acta 1066, 83–89.

    Article  PubMed  CAS  Google Scholar 

  19. Mouneimne, Y., Pierre-Francois, T., Barhoumi, R., and Nicolau, C. (1990) Electroinsertion of full length recombinant CD4 into red blood cell membrane. Biochim. Biophys. Acta 1027, 53–58.

    Article  PubMed  CAS  Google Scholar 

  20. Orlowski, S., Belehradek, J. Jr., Paoletti, C., and Mir, L. M. (1988) Transient electropermeabilization of cells in culture. Biochem. Pharmacol. 37, 4727–4733.

    Article  PubMed  CAS  Google Scholar 

  21. Zheng, Q. and Chang, D. C. (1991) High-efficiency gene transfection by in situ electroporation of cultured cells. Biochem. Biophys. Acta 1088, 104–110.

    PubMed  CAS  Google Scholar 

  22. Sukharev, S. I., Klenchin, V. A., Serov, S. M., Chernomordik, L. V., and Chizmadzhev, Y. A. (1992) Electroporation and electrophoretic DNA transfer into cells. Biophys. J. 63, 1320–1327.

    Article  PubMed  CAS  Google Scholar 

  23. Klenchin, V. A., Sukharev, S. I., Serov, S. M., Chernomordik, L. V., and Chizmadzhev, Y. A. (1991) Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophys. J. 60, 804–811.

    Article  PubMed  CAS  Google Scholar 

  24. Okino, M. and Mohri, H. (1987) Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn. J. Cancer Res. 78, 1319–1321.

    PubMed  CAS  Google Scholar 

  25. Mir, L. M., Orlowski, O., Belehradek, J. Jr., and Paoletti, C. (1991) Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur. J. Cancer 27, 68–72.

    Article  PubMed  CAS  Google Scholar 

  26. Serša, G., Novakovic, S., and Miklavčič, D. (1993) Potentiation of bleomycin antitumor effectiveness by electrotherapy. Cancer Lett. 69, 81–84.

    Article  PubMed  Google Scholar 

  27. Heller, R., Jaroszeski, M., Leo-Messina, J., Perrott, R., Van Voorhis, N., Reintgen, D., and Gilbert, R. (1995) Treatment of B16 melanoma with the combination of electroporation and chemotherapy. Bioelectrochem. Bioenerg. 36, 83–87.

    Article  CAS  Google Scholar 

  28. Jaroszeski, M. J., Gilbert, R., and Heller, R. (1997) Electrochemotherapy: an emerging drug delivery method for the treatment of cancer. Adv. Drug Deliv. Rev. 26, 185–197.

    Article  PubMed  CAS  Google Scholar 

  29. Mir, L. M., Belehradek, M., Domenge, C., Orlowski, S., Poddevin, J. Jr., Schwab, G., Luboinnski, B., and Paoletti, C. (1991) Electrochemotherapy, a novel antitumor treatment: first clinical trial. C. R. Acad. Sci. Paris 313, 613–618.

    PubMed  CAS  Google Scholar 

  30. Belehradek, M., Domenge, C., Luboinnski, B., Orlowski, S., Belehradek, J., and Mir, L. M. (1993) Electrochemotherapy, a new antitumor treatment. Cancer 72, 3694–3700.

    Article  PubMed  CAS  Google Scholar 

  31. Domenge, C., Orlowski, S., Luboinski, B., DeBaere, T., Schwaab, G., Belehradek, J. Jr., and Mir, L. M. (1996) Antitumor electrochemotherapy. Cancer 77, 956–963.

    Article  PubMed  CAS  Google Scholar 

  32. Heller, R., Jaroszeski, M. J., Glass, L. F., Messina, J. L., Rapaport, D. P., DeConti, R. C., Fenske, N. A., Gilbert, R. A., Mir, L. M., and Reintgen, D. S. (1996) Phase I/II trial for the treatment of cutaneous and subcutaneous tumors using electrochemotherapy. Cancer 77, 964–971.

    Article  PubMed  CAS  Google Scholar 

  33. Heller, R., Jaroszeski, M. J., Reintgen, D. S., Puleo, C. A., DeConti, R. C., Gilbert, R. A., and Glass, L. F. (1998) Treatment of cutaneous and subcutaneous tumors with electrochemotherapy using intralesional bleomycin Cancer 83, 148–157.

    Article  PubMed  CAS  Google Scholar 

  34. Rudolf, Z., Štabuc, B., Čemažar, M., Miklavčič, D., Vodovnik, L., and Serša, G. (1995) Electrochemotherapy with bleomycin: The first clinical experience in malignant melanoma patients. Radiol. Oncol. 29, 229–235.

    Google Scholar 

  35. Feuerbach, F. J. and Crystal, R. G. (1996) Progress in human gene therapy. Kidney Int. 49, 1791–1794.

    Article  PubMed  CAS  Google Scholar 

  36. Vile, R. C. (1996) Gene therapy for cancer: In the dock, blown off course or full speed ahead? Cancer and Metastasis Rev. 15, 283–286

    Article  CAS  Google Scholar 

  37. Dranoff, G. (1997) Gene therapy 1996. Biochem. Biophys. Acta 1332, R21–R24.

    PubMed  CAS  Google Scholar 

  38. Fouillard, L. (1996) Physical methods for gene transfer: An alternative to viruses. Hematol. Cell Ther. 38, 214–216.

    Article  PubMed  CAS  Google Scholar 

  39. Heller, R., Jaroszeski, M., Atkin, A., Moradpour, D., Gilbert, R., Wands, J., and Nicolau, C. (1996) In vivo gene electroinjection and expression in rat liver. FEBS Lett. 389, 225–228.

    Article  PubMed  CAS  Google Scholar 

  40. Suzuki, T., Shin, B., Fujikura, K., Matsuzaki, T., and Takata, K., (1998) Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Lett. 425, 436–440.

    Article  PubMed  CAS  Google Scholar 

  41. Wolff, J. A., Malone, R. W., Williams, P., Chong, W., Ascadi, G., Jani, A., and Felgner, P. L. (1990) Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468.

    Article  PubMed  CAS  Google Scholar 

  42. Wolff, J. A., Ludtke, J. J., Ascadi, G., Williams, P., and Jani, A. (1992) Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum. Mol. Genet. 1, 363–369.

    Article  PubMed  CAS  Google Scholar 

  43. Vitadello, M., Schiaffino, M.V., Picard, A., Scarpa, M., and Schiaffino, S. (1994) Gene transfer in regenerating muscle. Hum. Gene Ther. 5, 11–18.

    Article  PubMed  CAS  Google Scholar 

  44. Wells, D. J. (1993) Improved gene transfer by direct plasmid injection associated with regenerations in mouse skeletal muscle. FEBS Lett. 332, 179–182.

    Article  PubMed  CAS  Google Scholar 

  45. Aihara, H. and Miyazaki, J., (1998) Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16, 867–870.

    Article  PubMed  CAS  Google Scholar 

  46. Titomirov, A. V., Sukharev, S., and Kistanova, E. (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochem. Biophys. Acta 1088, 131–134.

    PubMed  CAS  Google Scholar 

  47. Zhang, L., Lingna, L., Hofmann, G. A., and Hoffman, R. M. (1996) Depthtargeted efficient gene delivery and expression in the skin by pulsed electric fields: an approach to gene therapy of skin aging and other diseases. Biochem. Biophys. Res. Commun. 220, 633–636.

    Article  PubMed  CAS  Google Scholar 

  48. Muramatsu, T., Shibata, O., Ryoki, S., Ohmori, Y., and Okumura, J. (1997) Foreign gene expression in the mouse testis by localized in vivo gene transfer. Biochem. Biophys. Res. Commun. 233, 45–49.

    Article  PubMed  CAS  Google Scholar 

  49. Nishi, T., Kimio, Y., Yanashiro, S., Takeshima, H., Sato, K, Hamada, K., Kitamural, I., Yoshimura, T., Saya, H., Kuratsu, J., and Ushio, Y. (1996) Highefficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res. 56, 1050–1055.

    PubMed  CAS  Google Scholar 

  50. Rols, M. P., Delteil, C., Golzio, M., Dumond, P., Cros, S., and Teissié, J. (1998) In vivo electrically mediated protein and gene transfer in murine melanoma. Nat. Biotechnol. 16, 168–171.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Jaroszeski, M.J., Gilbert, R., Nicolau, C., Heller, R. (2000). Delivery of Genes In Vivo Using Pulsed Electric Fields. In: Jaroszeski, M.J., Heller, R., Gilbert, R. (eds) Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery. Methods in Molecular Medicine, vol 37. Humana Press. https://doi.org/10.1385/1-59259-080-2:173

Download citation

  • DOI: https://doi.org/10.1385/1-59259-080-2:173

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-606-2

  • Online ISBN: 978-1-59259-080-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics