Advertisement

Principles of Membrane Electroporation and Transport of Macromolecules

  • Eberhard Neumann
  • Sergej Kakorin
  • Katja Toensing
Part of the Methods in Molecular Medicine book series (MIMM, volume 37)

Abstract

The phenomenon of membrane electroporation (ME) methodologically comprises an electric technique to render lipid and lipid-protein membranes porous and permeable, transiently and reversibly, by electric voltage pulses. It is of great practical importance that the primary structural changes induced by ME, condition the electroporated membrane for a variety of secondary processes, such as, for instance, the permeation of otherwise impermeable substances.

Keywords

External Electric Field Pore Formation Lipid Vesicle Maxwell Stress Spontaneous Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Neumann, E. and Rosenheck K. (1972) Permeability changes induced by electric impulses in vesicular membranes. J. Membr. Biol. 10, 279–290.PubMedCrossRefGoogle Scholar
  2. 2.
    Wong, T. K. and Neumann, E. (1982) Electric field mediated gene transfer. Biophys. Biochem. Res. Commun. 107, 584–587.CrossRefGoogle Scholar
  3. 3.
    Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845.PubMedGoogle Scholar
  4. 4.
    Neumann, E. and Kakorin, S. (1998) Digression on membrane electroporation and electroporative delivery of drugs and genes. Radiol. Oncol. 32, 7–17.Google Scholar
  5. 5.
    Neumann, E., Gerisch, G., and Opatz, K. (1980) Cell fusion induced by electric impulses applied to dictyostelium. Naturwissenschaften 67, 414–415.CrossRefGoogle Scholar
  6. 6.
    Mouneimne, Y., Tosi, P. F., Gazitt, Y., and Nicolau, C. (1989) Electro-insertion of xenoglycophorin into the red blood cell membrane. Biochem. Biophys. Res. Commun. 159, 34–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Pliquett, U., Zewert, T. E., Chen, T., Langer, R., and Weaver, J. C. (1996) Imaging of fluorescent molecule and small ion-transport through human stratumcorneum during high-voltage pulsing-localized transport regions are involved. Biophys. Chem. 58, 185–204.PubMedCrossRefGoogle Scholar
  8. 8.
    Mir, L. M., Orlowski, S., Belehradek, J. Jr., Teissié, J., Rols, M. P., Serša, G., Miklavčič, D., Gilbert, R., and Heller, R. (1995) Biomedical applications of electric pulses with special emphasis on antitumor electrochemotherapy. Bioelectrochem. Bioenerg. 38, 203–207.CrossRefGoogle Scholar
  9. 9.
    Neumann, E., Toensing, K., Kakorin, S., Budde, P., and Frey, J. (1998) Mechanism of electroporative dye uptake by mouse B cells. Biophys. J. 74, 98–108.PubMedCrossRefGoogle Scholar
  10. 10.
    Neumann, E., Kakorin, S., Tsoneva, I., Nikolova, B., and Tomov, T. (1996) Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation. Biophys. J. 71, 868–877.PubMedCrossRefGoogle Scholar
  11. 11.
    Kakorin, S., Redeker, E., and Neumann, E. (1998) Electroporative deformation of salt filled lipid vesicles. Eur. Biophys. J. 27, 43–53.CrossRefGoogle Scholar
  12. 12.
    Kakorin, S. and Neumann, E. (1998) Kinetics of electroporation deformation of lipid vesicles and biological cells in an electric field. Ber. Bunsenges. Phys. Chem. 102, 670–675.Google Scholar
  13. 13.
    Winterhalter, M., Klotz, K.-H., Benz, R., and Arnold, W. M. (1996) On the dynamics of the electric field induced breakdown in lipid membranes. IEEE Trans. Ind. Appl. 32, 125–128.CrossRefGoogle Scholar
  14. 14.
    Chang, C. (1992) Structure and dynamics of electric field-induced membrane pores as revealed by rapid-freezing electron microscopy. Guide to Electroporation and Electrofusion (Chang, C., Chassy, M., Saunders, J., and Sowers, A., eds.), Academic Press, San Diego, CA, pp. 9–28.Google Scholar
  15. 15.
    Hibino, M., Itoh, H., and Kinosita, K. (1993) Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys. J. 64, 1789–1800.PubMedCrossRefGoogle Scholar
  16. 16.
    Weaver, J. C. (1994) Molecular-basis for cell-membrane electroporation. Ann. N.Y. Acad. Sci. 720, 141–152.PubMedCrossRefGoogle Scholar
  17. 17.
    Weaver, J. and Chizmadzhev, Yu. (1996) Theory of electroporation: A review. Biolectrochem. Bioenerg. 41, 135–160.CrossRefGoogle Scholar
  18. 18.
    Neumann, E. and Kakorin, S. (1996) Electrooptics of membrane electroporation and vesicle shape deformation. Curr. Opin. Colloid Interface Sci. 1, 790–799.CrossRefGoogle Scholar
  19. 19.
    Kakorin, S., Stoylov, S. P., and Neumann, E. (1996) Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles. Biophys. Chem. 58, 109–116.PubMedCrossRefGoogle Scholar
  20. 20.
    Kinosita, Jr., Hibino, M., Itoh, H., Shigemori, M., Hirano, H., Kirino, Y., and Hayakawa, T. (1992) Events of membrane electroporation visualized on time scale from microsecond to second. Guide to Electroporation and Electrofusion (Chang, C., Chassy, M., Saunders, J., and Sowers, A., eds.), Academic Press, San Diego, CA, pp. 29–47.Google Scholar
  21. 21.
    Neumann, E. (1989) The relaxation hysteresis of membrane electroporation. Electroporation and Electrofusion in Cell Biology (Neumann, E., Sowers, A. E., and Jordan, C., eds.), Plenum, New York, pp. 61–82.Google Scholar
  22. 22.
    Smaby, J. and Brockman, H. (1990) Surface dipole moments of lipids at the argon-water interface. Biophys. J. 58, 195–204.PubMedCrossRefGoogle Scholar
  23. 23.
    Cevc, G. and Seddon, J. (1993) Physical characterization. Phospolipid Handbook (Cevc G., ed.), Marcel Dekker, New York, pp. 351–402.Google Scholar
  24. 24.
    Neumann, E. (1992) Membrane electroporation and direct gene transfer. Biochem. Bioenerg. 28, 247–267.CrossRefGoogle Scholar
  25. 25.
    Cevc, G. (1990) Membrane electrostatics. Biochim. Biophys. Acta 1031, 311–382.PubMedGoogle Scholar
  26. 26.
    Neumann, E. and Boldt, E. (1989) Membrane electroporation: Biophysical and biotechnical aspects. Charge and Field Effects in Biosystems, Vol. 2 (Allen, M., Cleary, S., and Hawkridge, F., eds.), Plenum, New York, pp. 373–382.Google Scholar
  27. 27.
    Neumann, E. (1986) Elementary analysis of chemical electric field effects in biological macromolecules I and II. Modern Bioelectrochemistry (Gutmann, F. and Keyzer, H., eds.), Plenum, New York, pp. 97–132 and 133-175.Google Scholar
  28. 28.
    Neumann, E. (1986) Chemical electric field effects in biological macromolecules. Prog. Biophys. Mol. Biol. 47, 197–231.PubMedCrossRefGoogle Scholar
  29. 29.
    Steiner, U. and Adam, G. (1984) Interfacial properties of hydrophilic surfaces of phospholipid films as determined by method of contact angles. Cell Biophys. 6, 279–299.PubMedGoogle Scholar
  30. 30.
    Tönsing, K., Kakorin, S., Neumann, E., Liemann, S., and Huber, R. (1997) Annexin V and vesicle membrane electroporation. Eur. Biophys. J. 26, 307–318.PubMedCrossRefGoogle Scholar
  31. 31.
    Seifert, U. and Lipowsky, R. (1995) Morphology of vesicles. Structure and Dynamics of Membranes, Vol. 1A (Lipowsky, R. and Sackmann, E., eds.), Elsevier, Amsterdam, pp. 403–463.CrossRefGoogle Scholar
  32. 32.
    Lipowsky, R. (1998) Vesicles and Biomembranes. Encycl. Appl. Phys. 23, 199–222.Google Scholar
  33. 33.
    Winterhalter, M. and Helfrich, W. (1988) Effect of surface charge on the curvature elasticity of membranes. J. Phys. Chem. 92, 6865–6867.CrossRefGoogle Scholar
  34. 34.
    Fogden, A., Mitchell, D. J., and Ninham B. W. (1990) Undulations of charged membranes. Langmuir 6, 159–162.CrossRefGoogle Scholar
  35. 35.
    Abidor, I. G., Arakelyan, V. B., Chernomordik, L. V., Chizmadzhev, Y. A., Pastuchenko, V. P., and Tarasevich, M. R. (1979) Electric breakdown of bilayer lipid membrane. I. The main experimental facts and their theoretical discussion. Bioelectrochem. Bioenerg. 6, 37–52.CrossRefGoogle Scholar
  36. 36.
    Klösgen, B. and Helfrich, W. (1993) Special features of phosphatidylcholine vesicles as seen in cryo-transmission electron-microscopy. Eur. Biophys. J. 22, 329–340.PubMedCrossRefGoogle Scholar
  37. 37.
    Spassova, M., Tsoneva, I., Petrov, A. G., Petkova, J. I., and Neumann, E. (1994) Dip patch clamp currents suggest electrodifusive transport of the polyelectrolyte DNA through lipid bilayers. Biophys. Chem. 52, 267–274.PubMedCrossRefGoogle Scholar
  38. 38.
    Hristova, N. I., Tsoneva, I., and Neumann, E. (1997) Sphingosine-mediated electroporative DNA transfer through lipid bilayers. FEBS Lett. 415, 81–86.PubMedCrossRefGoogle Scholar
  39. 39.
    Israelachvili, J. N. and Pashley, R. M. (1984) Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions, J. Colloid Interface Sci. 98, 500–514.Google Scholar
  40. 40.
    Sukharev, S. I., Klenchin, V. A., Serov, S. M., Chernomordik, L. V., and Chizmadzhev, Y. A. (1992) Electroporation and electrophoretic DNA transfer into cells: The effect of DNA interaction with electropores. Biophys. J. 63, 1320–1327.PubMedCrossRefGoogle Scholar
  41. 41.
    Chirico, G., Beretta, S., and Baldini, G. (1992) Light scattering of DNA plasmids containing repeated curved insertions: Anomalous compaction. Biophys. Chem. 45, 101–108.CrossRefGoogle Scholar
  42. 42.
    Mir, L., Tounekti, O., and Orlowski, S. (1996) Bleomycin: Revival of an old drug. [Review] Gen. Pharmacol. 27, 745–748.PubMedGoogle Scholar
  43. 43.
    Gehl, J., Skovsgaard, T., and Mir, L. (1998) Enhancement of cytoxicity by electropermeabilization: An improved method for screening drugs. Anticancer Drugs 9, 319–325.PubMedCrossRefGoogle Scholar
  44. 44.
    Heller, R., Jaroszeski, M., Glass, L., Messina, J., Rapaport, D., DeConti, R., Fenske, N., Gilbert, R., Mir, L., and Reintgen, D. (1996) Phase I/II trial for the treatment of cutaneous and subcutaneous tumors using electrochemotherapy. Cancer 77, 964–971.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Eberhard Neumann
    • 1
  • Sergej Kakorin
    • 1
  • Katja Toensing
    • 1
  1. 1.University of BielefeldBielefeldGermany

Personalised recommendations