Skip to main content

Antibody Conjugation Methods for Active Targeting of Liposomes

  • Protocol

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 25))

Abstract

Liposomes are useful drug delivery vehicles since they may protect encapsulated drugs from enzymatic degradation and rapid clearance in vivo, or alter biodistribution, potentially leading to reduced toxicities (1,2). A major limitation to the development of many specialized applications is the problem of directing liposomes to tissues where they would not normally accumulate. Consequently, a great deal of effort has been made over the years to develop liposomes that have targeting vectors attached to the bilayer surface. These vectors have included ligands such as oligosaccharides (3,4), peptides (5,6), proteins (7,8) and vitamins (9). Most studies have focused on antibody conjugates since procedures for producing highly specific monoclonal antibodies (MAbs) are well established. In principle it should be possible to deliver liposomes to any cell type as long as the cells are accessible to the carrier. In practice it is usually not this simple since access to tissue, competition, and rapid clearance are formidable obstacles. It has also been shown that antibodies become immunogenic when coupled to liposomes (10,11), although in similar experiments with ovalbumin we have demonstrated that immunogenicity can be suppressed by formulating the liposomes with the cytotoxic drug doxorubi-cin (12). Such issues as these suggest that the development of antibody-targeted liposomes for in vivo applications will present difficult challenges.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Boman, N. L., Bally, M. B., Cullis, P. R., Mayer, L. D., and Webb, M. S. (1995) Encapsulation of vincristine in liposome reduces toxicity and improves anti-tumour efficacy. J. Liposome Res. 5, 523–541.

    Article  CAS  Google Scholar 

  2. Boman, N. L., Cullis, P. R., Bally, M. B., and Mayer, L. D. (1995) Preclinical and clinical activity of liposomal doxorubicin, in Liposomes in Biomedical Applications, HAP Academic Publishers, pp. 85–103.

    Google Scholar 

  3. Murohara, T., Margiotta, J., Phillips, L. M., Paulson, J. C., DeFrees, S., Zalipsky, S., Guo, L. S., and Lefer, A. M. (1995) Cardioprotection by liposome-conjugated sialyl Lewisx-oligosaccharide in myocardial ischaemia and reperfusion injury. Cardiovas. Res. 30, 965–974.

    CAS  Google Scholar 

  4. Shimada, K., Kamps, J. A. A. M., Regts, J., Ikeda, K, Shiozawa, T., Hirota, S., and Scherphof, G. L. (1997) Biodistribution of liposomes containing synthetic galactose-terminated diacylglyceryl poly(ethyleneglycol)s. Biochim. Biophys. Acta 1326, 329–341.

    Article  CAS  PubMed  Google Scholar 

  5. Hsu, M. J. and Juliano, R. L. (1982) Interactions of liposomes with the reticuloen-dothelial system. II: Nonspecific and receptor-mediated uptake of liposomes by mouse peritoneal macrophages. Biochim. Biophys. Acta 720, 411–419.

    Article  CAS  PubMed  Google Scholar 

  6. Vidal, M., Saite-Marie, J., Philippot, J. R., and Bienevue, A. (1987) The influence of coupling transferrin to liposomes or minibeads on its uptake and fate in leuke-mic L2C cells. FEBS Lett. 216, 159–163.

    Article  CAS  PubMed  Google Scholar 

  7. Nishiya, T. and Sloan, S. (1996) Interaction of RGD liposomes with platelets. Biochem. Biophys. Res. Commun. 224, 242–245.

    Article  CAS  PubMed  Google Scholar 

  8. Zalipsky, S., Mullah, N., Harding, J. A., Gittleman, J., Guo, L., and DeFrees, S. A. (1997) Poly(ethylene glycol)-grafted liposomes with oligopeptide or oligosaccharide ligands appended to the termini of the polymer chains. Bioconj. Chem. 8, 111–118.

    Article  CAS  Google Scholar 

  9. Lee, R. J. and Low, P. S. (1994) Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J. Biol. Chem. 2651, 3198–3204.

    Google Scholar 

  10. Harding, J. A., Engbers, G. M., Newman, M. S., Goldstein, N. I., and Zalipsky, S. (1997) Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes. Biochim. Biophys. Acta 1327, 181–192.

    Article  CAS  PubMed  Google Scholar 

  11. Phillips, N. C. and Dahman, J. (1995) Immunogenicity of immunoliposomes: reactivity against species-specific IgG and liposomal phospholipids. Immunology Letters 45, 149–152.

    Article  CAS  PubMed  Google Scholar 

  12. Tardi, P. G., Swartz, E. N., Harasym, T. O., Cullis, P. R., and Bally, M. B. (1999) An immune response to ovalbumin covalently coupled to liposomes is prevented when liposomes used contain doxorubicin. J. Immun. Meth., submitted.

    Google Scholar 

  13. Heath, T. D. and Martin, F. J. (1986) The development and application of protein-liposome conjugation techniques. Chem. Phys. Lipids 40, 347–358.

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto, Y., Endoh, H., and Sugawara, M. (1993) Chemical methods for the modification of liposomes with proteins or antibodies, in Liposome Technology, vol. 3, CRC, Boca Raton, FL, pp. 41–49.

    Google Scholar 

  15. Leserman, L. D., Machy, P., and Barbet, J. (1993) Co valent coupling of monoclonal antibodies and protein A to liposomes: specific interaction with cells in vitro and in vivo, in Liposome Technology, vol. 3, CRC, Boca Raton, FL, pp. 29–40.

    Google Scholar 

  16. Torchilin, V. P. (1993) Immobilization of specific proteins on liposome surface: systems for drug targeting, in Liposome Technology vol. 3, CRC, Boca Raton, FL, pp. 75–90.

    Google Scholar 

  17. Hermanson, G. T., Mallia, A. K., and Smith, P. K. (1992) Immobilized Affinity Ligand Techniques. Academic, San Diego, CA.

    Google Scholar 

  18. Coulter, A. and Harris, R. (1983) Simplified preparation of rabbit Fab fragments J. Immunol. Meth. 59, 199–203.

    Article  CAS  Google Scholar 

  19. Rousseaux, J., Rousseaux-Prevost, R., and Bazin, H. (1983) Optimal conditions for the preparation of Fab and F(ab’)2 fragments from monoclonal IgG of different rat IgG subclasses. J. Immunol. Meth. 64, 141–146.

    Article  CAS  Google Scholar 

  20. Aragonal, D. and Leserman, L. D. (1986) Immune clearance of liposomes inhibited by an anti-Fc receptor antibody in vivo. Proc. Natl. Acad. Sci. USA 83, 2699–2703.

    Article  Google Scholar 

  21. Winter, G. and Milstein, C. (1990) Man-made antibodies. Nature 349, 293–299.

    Article  Google Scholar 

  22. Huang, C. H. (1969) Studies on phosphatidylcholine vesicles: formation and physical characteristics. Biochemistry 8, 344–352.

    Article  CAS  PubMed  Google Scholar 

  23. Hope, M. J., Nayar, R., Mayer, L. D., and Cullis, P. R. C. (1993) Reduction of liposome size and preparation of unilamellar vesicles by extrusion techniques, in Liposome Technology vol. 1, CRC, Boca Raton, FL, pp. 123–139.

    Google Scholar 

  24. Szoka, F. and Papahadjopoulos, D. (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA 75, 4194–4198.

    Article  CAS  PubMed  Google Scholar 

  25. Szoka, F. and Papahadjopoulos, D. (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Ann. Rev. Biophys. Bioeng. 9, 467–508.

    Article  CAS  Google Scholar 

  26. Mayer, L. D., Madden, T. M., Bally, M. B., and Cullis, P. R. (1993) pH gradient-mediated drug entrapment of liposomes, in Liposome Technology vol. 2, CRC, Boca Raton, FL, pp. 27–44.

    Google Scholar 

  27. Endoh, H., Suzuki, Y., and Hashimoto, Y. (1981) Antibody coating of liposomes with l-ethyl-3-(3-dimethylaminopropyl)carbodiimide and the effect on target specificity. J. Immun. Meth. 44, 79–85.

    Article  CAS  Google Scholar 

  28. Dunnick, J. K., McDougall, I. R., Aragon, S., Goris, M. L., and Kriss, J. P. (1975) Vesicle interactions with polyamino acids and antibody: in vitro and in vivo studies. J. Nuclear Med. 16, 483–487.

    CAS  Google Scholar 

  29. Huang, A., Huang, L., and Kennel, S. J. (1980) Monoclonal antibody covalently coupled with fatty acid. A reagent for in vitro liposome targeting. J. Biol. Chem. 255, 8015–8018.

    CAS  PubMed  Google Scholar 

  30. Maruyama, K., Takizawa, T., Yuda, T., Kennel, S. J., Huang, L., and Iwatsuru, M. (1995) Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies. Biochim. Biophys. Acta 1234, 74–80.

    Article  PubMed  Google Scholar 

  31. Barbet, J., Machy, P., and Leserman, L. O. (1981) Monoclonal antibody covalently coupled to liposomes: specific targeting to cells. J. Supramolec. Struct. Cell. Biochem. 16, 243–258.

    Article  CAS  Google Scholar 

  32. Jones, M. N. and Hudson, M. J. (1993) The targeting of immunoliposomes to tumour cells (A431) and the effects of encapsulated methotrexate. Biochim. Biophys. Acta 1152, 231–242.

    Article  CAS  PubMed  Google Scholar 

  33. Schwendener, R. A., Trub, T., Schott, H., Langhals, H., Barth, R. F., Groscurth, P., and Hengartner, H. (1990) Comparative studies of the preparation of immunoliposomes with the use of two bifunctional coupling agents and investigation of in vitro immunoliposome-target cell binding by cytofluorometry and electron microscopy. Biochim. Biophys. Acta 1026, 69–79.

    Article  CAS  PubMed  Google Scholar 

  34. Hansen, C. B., Kao, G. Y., Moase, E. H., Zalipsky, S., and Allen, T. M. (1995) Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim. Biophys. Acta 1239, 133–144.

    Article  PubMed  Google Scholar 

  35. Carlsson, J., Drevin, H., and Axen, R. (1978) Protein thiolation and reversible protein-protein conjugation. Biochem. J. 173, 723–737.

    CAS  PubMed  Google Scholar 

  36. Ansell, S. M., Tardi, P. G., and Buchkowsky, S. S. (1996) 3-(2-pyridyldithio)-propionic acid hydrazide as a cross-linker in the formation of liposome-antibody conjugates. Bioconj. Chem. 7, 490–496.

    Article  CAS  Google Scholar 

  37. Domen, P. L., Nevens, J. R., Mallia, K., Hermanson, G. T., and Klenk, D. C. (1980) Site directed immobilization of proteins. J. Chromatogr. 510, 293–302.

    Article  Google Scholar 

  38. Chua, M. M, Fan, S. T., and Karush, F. (1984) Attachment of immunoglobulin to liposomal membrane via protein carbohydrate. Biochim. Biophys. Acta 800, 291–300.

    CAS  PubMed  Google Scholar 

  39. Shahinian, S. and Silvius J. R. (1995) A novel strategy affords high yield coupling of antibody Fab’ fragments to liposomes. Biochim. Biophys. Acta 1239, 157–167.

    Article  PubMed  Google Scholar 

  40. Kirpotin, D., Park, J. W., Hong, K., Zalipsky, S., Li, W. L., Carter, P., Benz, C. C., and Papahadjopoulos, D. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 36, 66–75.

    Google Scholar 

  41. Martin, F. J. and Papahadjopoulos, D. (1982) Irreversible coupling of immunoglobulin fragments to preformed vesicles. An improved method for liposome targeting. J. Biol. Chem. 257, 286–288.

    CAS  PubMed  Google Scholar 

  42. Longman S. A., Cullis, P. R., and Bally, M. B. (1995) A model approach for assessing liposome targeting in vivo. Drug Delivery 2, 156–165.

    Article  CAS  Google Scholar 

  43. Longman, S. A., Cullis, P. R., Choi, L., de Jong, G., and Bally, M. (1995) A two step targeting approach for delivery of doxorubicin loaded liposomes to tumour cells in vivo. Cancer Chem. Pharmacol. 36, 91–101.

    Article  CAS  Google Scholar 

  44. Matthay, K. K., Heath, T. D., Badger, C. C., Bernstein, I. D., and Papahadjopoulos, D. (1986) Antibody-directed liposomes: comparison of various ligands for association, endocytosis, and drug delivery. Cancer Res. 46, 4904–4910.

    CAS  PubMed  Google Scholar 

  45. Machy, P. and Leserman, L. D. (1983) Small liposomes are better than large liposomes for specific drug delivery in vitro. Biochim. Biophys. Acta 730, 313–320.

    Article  CAS  PubMed  Google Scholar 

  46. Lougrey, H. L., Bally, M. B., and Cullis, P. R. (1987) A novel-covalent method of attaching antibodies to liposomes. Biochim. Biophys. Acta 901, 157–160.

    Article  Google Scholar 

  47. Singh, R., Blattler, W. A., and Collinson, A. R. (1993) An amplified assay for thiols based on reactivation of papain. Anal. Biochem. 213, 49–56.

    Article  CAS  PubMed  Google Scholar 

  48. Harasym, T. O., Tardi, P., Longman, S. A., Ansell, S. M., Bally, M. B., Cullis, P. R. C., and Choi, L. S. L. (1995) Poly(ethylene glycol)-modified phospholipids prevent aggregation during covalent conjugation of proteins to liposomes. Bioconj. Chem. 6, 187–194.

    Article  CAS  Google Scholar 

  49. Allen, T. M., Hansen, C., Martin, F., Redemann, C., and Yau-Young, A. (1991) Liposomes containing synthetic lipid derivatives of polyethylene glycol show prolonged circulation half-lives in vivo. Biochim. Biophys. Acta 1066, 29–36.

    Article  CAS  PubMed  Google Scholar 

  50. Allen, T. M., Agrawal, A. K., Ahmad, I., I., Hansen, C. B., and Zalipsky, S. (1994) The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of lipo-somes by the mononuclear phagocyte system. J. Liposome Res. 4, 1–26.

    Article  CAS  Google Scholar 

  51. Chonn, A. and Cullis, P. R. (1992) Ganglioside GMI and hydrophilic polymers increase liposome circulation times by inhibiting the association of blood proteins. J. Liposome Res. 2, 397–410.

    Article  CAS  Google Scholar 

  52. Devine, D. V. and Marjan, J. M. (1997) The role of immunoproteins in the survival of liposomes in the circulation. Crit. Rev. Ther. Drug Carrier Systems 14, 105–131.

    CAS  Google Scholar 

  53. Klibanov, A. L., Maruyama, K., Beckerleg, A. M., Torchilin, V. P., and Huang, L. (1991) Activity of amphipathic poly(ethylene glycol)5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavourable for immunoliposome linking to target. Biochim. Biophys. Acta 1062, 142–148.

    Article  CAS  PubMed  Google Scholar 

  54. Matthay, K. K., Abai, A. M., Cobb, S., Hong, K., Papahadjopoulos, D., and Straubinger, R. M. (1989) Role of ligand in antibody-directed endocytosis of liposomes by human T-leukemia cells. Cancer Res. 49, 4879–4886.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Ansell, S.M., Harasym, T.O., Tardi, P.G., Buchkowsky, S.S., Bally, M.B., Cullis, P.R. (2000). Antibody Conjugation Methods for Active Targeting of Liposomes. In: Francis, G.E., Delgado, C. (eds) Drug Targeting. Methods in Molecular Medicine™, vol 25. Humana Press. https://doi.org/10.1385/1-59259-075-6:51

Download citation

  • DOI: https://doi.org/10.1385/1-59259-075-6:51

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-531-7

  • Online ISBN: 978-1-59259-075-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics