Skip to main content

Histone Acetylation and Deacetylation

  • Protocol
Asthma

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 44))

Abstract

In the resting cell, DNA is tightly compacted to prevent transcription factor accessibility. During activation of the cell, this compact inaccessible DNA is made available to DNA-binding proteins, thus allowing the induction of gene transcription (1 ,2). DNA is packaged into chromatin, a highly organized and dynamic protein-DNA complex. The fundamental subunit of chromatin, the nucleosome, is composed of an octomer of four core histones, an H3/H4 tetramer and two H2A/H2B dimers, surrounded by 146 bp DNA (2,3). The packaging of DNA into nucleosomes acts as a barrier to the initiation of transcription by preventing the access of transcriptional factors, and RNA polymerase II, to their cognate recognition sequences (4). Specific lysine residues in the N-terminal tails of the core histone can be post-translationally modified by acetylation of the ε-amino group. The dynamic equilibrium of core histone acetylation is established and maintained by histone acetyltransferase (HAT) and histone deacetylase (HDAC). Several transcriptional regulators possess intrinsic HAT and HDAC activities, strongly suggesting that histone acetylation and deacetylation play a causal role in regulating transcription (5-8). There is compelling evidence that increased gene transcription is associated with an increase in histone acetylation; hypoacetylation of histone is correlated with reduced transcription or gene silencing (2 ,7,8; Fig 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beato, M. (1996) Chromatin structure and the regulation of gene expression: remodeling at the MMTV promoter. J. Mol. Med. 74, 711–724.

    Article  CAS  PubMed  Google Scholar 

  2. Wolffe, A. P. (1997) Transcriptional control. Sinful repression. Nature 387, 15–17.

    Article  Google Scholar 

  3. Beato, M. and Eisfeld, K. (1997) Transcription factor access to chromatin. Nucleic Acids Res. 25, 3559–3563.

    Article  CAS  PubMed  Google Scholar 

  4. Workman, J. L. and Buchman, A. R. (1993) Multiple functions of nucleosomes and regulatory factors in transcription. Trends Biochem. Sci. 18, 90–95.

    Article  CAS  PubMed  Google Scholar 

  5. Gregory, P. D. and Horz,. (1998) Chromatin and transcription-how transcription factors battle with a repressive chromatin enviroment. Eur. J. Biochem. 251, 9–18.

    Article  CAS  PubMed  Google Scholar 

  6. Grunstein, M. (1997) Histone acetylation in chromatin structure and transcription Nature 389, 349–352.

    CAS  Google Scholar 

  7. Kuo, M-H. and Allis, C. D. (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20, 615–626.

    Article  CAS  PubMed  Google Scholar 

  8. Workman, J. L. and Kingston, R. E. (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579.

    Article  CAS  PubMed  Google Scholar 

  9. Kouzarides, T. (1999) Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet. Dev. 9, 40–48.

    Article  CAS  PubMed  Google Scholar 

  10. Taplick, J., Kurtev, V., Lagger, G., and Seiser, C. (1998) Histone H4 acetylation during interleukin-2 stimulation of mouse T cells. FEBS Lett. 436, 349–352.

    Article  CAS  Google Scholar 

  11. Turner, B. M. and Fellows, G. (1989) Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur. J. Biochem. 179, 131–139.

    Article  CAS  PubMed  Google Scholar 

  12. Yoshida, M., Kijima, M., Akita, M., and Beppu, T. (1990) Potent and specific inhibition of mammalian histone deacetylase both in vitro and in vivo by Trichostatin A. J. Biol. Chem. 265, 17,174–17,179.

    CAS  PubMed  Google Scholar 

  13. Simon, R. H. and Felsenfeld, G. (1979) A new procedure for purifying histone pairs H2A+H2B and H3+H4 form chromatin using hydroxylapatite. Nucleic Acid Res. 6, 689–696.

    Article  CAS  PubMed  Google Scholar 

  14. Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y. (1996) The transcription coactivators p300 and CBP are histone acetyltransferase. Cell 87, 953–959.

    Article  CAS  PubMed  Google Scholar 

  15. Koelle, D., Brosch, G., Lechner, T., Lusser, A., and Loidl, P. (1998) Biochemical methods for analysis of histone deacetylases-331. Methods Comp Methods Enzymol. 15, 323–331.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Ito, K., J. Barnes, P., M. Adcock, I. (2000). Histone Acetylation and Deacetylation. In: Fan Chung, K., Adcock, I. (eds) Asthma. Methods in Molecular Medicine™, vol 44. Humana Press. https://doi.org/10.1385/1-59259-072-1:309

Download citation

  • DOI: https://doi.org/10.1385/1-59259-072-1:309

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-626-0

  • Online ISBN: 978-1-59259-072-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics