The E. coli Vsr Endonuclease

Assaying Activity In Vitro and In Vivo
  • Claire G. Cupples
  • Georgina Macintyre
Part of the Methods in Molecular Biology™ book series (MIMB, volume 152)

Abstract

The primary function of the Vsr endonuclease of Escherichia coli is to initiate repair of T/G mismatches that arise from deamination of 5-methylcytosine to thymine (reviewed in 1). By making a nick 5′ of the T, Vsr provides a site for DNA polymerase I to start the removal of the mismatched base, along with several nucleotides on its 3′ side. Resynthesis of the missing bases by the polymerase restores the correct C.G basepair and completes the process of very short patch (VSP) repair.

Keywords

Microfuge Tube Multicopy Plasmid Nonsense Codon Sonication Buffer Talon Metal Affinity Resin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lieb, M. and Bhagwat, A. S. (1996) Very short patch repair: reducing the cost of cytosine methylation. Mol. Microbiol. 20, 467–473.PubMedCrossRefGoogle Scholar
  2. 2.
    Lieb, M. (1991) Spontaneous mutation at 5-methylcytosine hotspot is prevented by very short patch (VSP) mismatch repair. Genetics 128, 23–27.PubMedGoogle Scholar
  3. 3.
    Gläsner, W., Merkl, R., Schellenberger, V., and Fritz, H.-J. (1995) Substrate preferences of Vsr DNA mismatch endonuclease and their consequences for the evolution of the Escherichia coli K-12 genome. J. Mol. Biol. 245, 1–7.PubMedGoogle Scholar
  4. 4.
    Lieb, M. and Rehmat, S. (1995) Very short patch repair of T:G mismatches in vivo: Importance of context and accessory proteins. J. Bacteriol. 177, 660–666.PubMedGoogle Scholar
  5. 5.
    Hennecke, F., Kolmar, H., Bründl, K., and Fritz, H.-J. (1991) The vsr gene product of E. coli K-12 is a strand-and sequence-specific DNA mismatch endonuclease. Nature 353, 776–778.PubMedCrossRefGoogle Scholar
  6. 6.
    Ruiz, S. M., Létourneau, S., and Cupples, C. G. (1993) Isolation and characterization of an Escherichia coli strain with a high frequency of C-to-T mutations at 5-methylcytosines. J. Bacteriol. 175, 4985–4989.PubMedGoogle Scholar
  7. 7.
    Petropoulos, L., Vidmar, J. J., Passi, E., and Cupples, C. G. (1994) A simple assay for monitoring the mutagenic effects of 5-methylcytosine deamination in Escherichia coli. Mutat. Res. 304, 181–185.PubMedCrossRefGoogle Scholar
  8. 8.
    Wyszynski, M., Gabbara, S., and Bhagwat, A. S. (1994) Cytosine deaminations catalysed by DNA cytosine methyltransferases are unlikely to be the cause of mutational hot-spots at the sites of cytosine methylation in E. coli. Proc. Natl. Acad. Sci. USA 91, 1574–1578.PubMedCrossRefGoogle Scholar
  9. 9.
    Macintyre, G., Pitsikas, P., and Cupples, C. G. (1999) Growth phase-dependent regulation of Vsr endonuclease may contribute to 5-methylcytosine mutational hotspots in Escherichia coli. J. Bacteriol. 181, 4435,4436.Google Scholar
  10. 10.
    Lieb, M. (1983) Specific mismatch correction in bacteriophage lambda crosses by very short patch repair. Genetics 191, 118–125.Google Scholar
  11. 11.
    Lieb, M. (1987) Bacterial genes mutL, mutS and dcm participate in repair of mismatches at 5-methylcytosine sites. J. Bacteriol. 189, 5241–5246.Google Scholar
  12. 12.
    Jones, M., Wagner, R., and Radman, M. (1987) Mismatch repair of deaminated 5-methylcytosine. J. Mol. Biol. 194, 155–159.PubMedCrossRefGoogle Scholar
  13. 13.
    Dzidic, S. and Radman, M. (1989) Genetic requirements for hyper-recombination by very short patch repair: involvement of Escherichia coli DNA polymerase I. Mol. Gen. Genet. 217, 254–256.PubMedCrossRefGoogle Scholar
  14. 14.
    Doiron, K. M. J., Viau, S., Koutroumanis, M., and Cupples, C. G. (1996) Overexpression of vsr in Escherichia coli is mutagenic. J. Bacteriol. 178, 4294–4296.PubMedGoogle Scholar
  15. 15.
    Macintyre, G., Doiron, K. M. J., and Cupples, C. G. (1997) The Vsr endonuclease of Escherichia coli: an efficient DNA repair enzyme and a potent mutagen. J. Bacteriol. 179, 6048–6052.PubMedGoogle Scholar
  16. 16.
    Cupples, C. G. and Miller, J. H. (1988) Effects of amino acid substitutions at the active site in Escherichia coli β-galactosidase. Genetics 120, 637–644.PubMedGoogle Scholar
  17. 17.
    Dar, M. E. and Bhagwat, A. S. (1993) Mechanism of expression of DNA repair gene vsr, an Escherichia coli gene that overlaps the DNA cytosine methylase gene, dcm. Molec. Microbiol. 9, 823–833.CrossRefGoogle Scholar
  18. 18.
    Miller, J. H. (1992) A Short Course in Bacterial Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  19. 19.
    Cupples, C. G. and Miller, J. H. (1989) A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitution mutations. Proc. Natl. Acad. Sci. USA 86, 5345–5349.PubMedCrossRefGoogle Scholar
  20. 20.
    Cupples, C. G., Cabrera, C., Cruz, C., and Miller, J. H. (1990) A set of lacZ mutations in Escherichia coli that allow rapid detection of specific frameshift mutations. Genetics 125, 275–280.PubMedGoogle Scholar
  21. 21.
    Doiron, K. M. J., Lavigne-Nicolas, J., and Cupples, C.G. (1999) Effect of interaction between 5-azacytidine and DNA (cytosine-5) methyltransferase on C-to-G and C-to-T mutations in Escherichia coli. Mutat. Res. 429, 37–44.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Claire G. Cupples
    • 1
  • Georgina Macintyre
    • 1
  1. 1.Department of BiologyConcordia UniversityMontréalCanada

Personalised recommendations