Detection of DNA Deoxyribophosphodiesterase Activity

  • Margarita Sandigursky
  • William A. Franklin
Part of the Methods in Molecular Biology™ book series (MIMB, volume 152)

Abstract

The major pathway for the removal of oxidative base damage is the DNA base excision repair pathway, found in prokaryotes and eukaryotes (1). In this pathway, oxidized DNA bases are removed by specific DNA glycosylases, leaving apurinic/apyrimidinic (AP) sites in the DNA (1,2). AP sites can also arise spontaneously in DNA through depurination (3) and, being devoid of genetic information, can be both cytotoxic and mutagenic lesions (4, 5, 6). Several DNA glycosylases have been found that convert a variety of damaged nucleotide residues to AP sites by removing deaminated, oxidized, or alkylated bases from DNA. Uracil, either misincorporated in place of thymine or resulting from deamination of cytosine, is removed by a specific glycosylase, uracil-DNA glycosylase, found in prokaryotes and eukaryotes (1,4).

Keywords

Elution Position Klenow Enzyme Swing Bucket Rotor Sodium Thioglycolate Oxidative Base Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lindahl, T. (1993) Instability and decay of the primary structure of DNA. Nature 362, 709–715.PubMedCrossRefGoogle Scholar
  2. 2.
    Doetsch, P. W. and Cunningham, R. P. (1990) The enzymology of apurinic/ apyrimidinic endonucleases. Mutat. Res. 236, 173–201.PubMedGoogle Scholar
  3. 3.
    Lindahl, T. and Nyberg, B. (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11, 3610–3618.PubMedCrossRefGoogle Scholar
  4. 4.
    Olsen, L. C., Aasland, R., Krokan H. E., and Helland D. E. (1991) Human uracil-DNA glycosylase complements E. coli ung mutants. Nucleic Acids Res. 19, 4473–4478.CrossRefGoogle Scholar
  5. 5.
    Loeb, L. A. (1985) Apurinic sites as mutagenic intermediates. Cell 40, 483–484.PubMedCrossRefGoogle Scholar
  6. 6.
    Loeb, L. A. and Preston, B. D. (1986) Mutagenesis by apurinic/apyrimidinic sites. Annu. Rev. Genet. 20, 201–230.PubMedCrossRefGoogle Scholar
  7. 7.
    Yajko, D. M. and Weiss, B. (1975) Mutations simultaneously affecting endonuclease II and exonuclease III in Escherichia coli. Proc. Natl. Acad. Sci. USA 72, 688–692.CrossRefGoogle Scholar
  8. 8.
    Weiss, B. (1976) Endonuclease II of Escherichia coli is exonuclease III. J. Biol. Chem. 251, 1896–1901.PubMedGoogle Scholar
  9. 9.
    Chan, E. and Weiss, B. (1987) Endonuclease IV of Escherichia coli is induced by paraquat. Proc. Natl. Acad. Sci. USA 84, 3189–3193.PubMedCrossRefGoogle Scholar
  10. 10.
    Mazumder, A., Gerlt, J. A., Absalon, M. J., et al. (1991) Stereochemical studies of the β-elimination reactions at aldehyic abasic sites in DNA: endonuclease III from Escherichia coli, sodium hydroxide, and ly-trp-lys. Biochemistry 30, 1119–1126.PubMedCrossRefGoogle Scholar
  11. 11.
    Bailly, V. and Verly, W. G. (1987) Escherichia coli endonuclease III is not an endonuclease but a β-elimination catalyst. Biochem. J. 242, 565–572.PubMedGoogle Scholar
  12. 12.
    Aspinwall, R., Rothwell, D. G., Roldan-Arjona, T., et al. (1997) Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proc. Natl. Acad. Sci. USA 94, 109–114.PubMedCrossRefGoogle Scholar
  13. 13.
    Hilbert, T. P., Chaung, W., Boorstein, R. J., et al. (1997) Cloning and expression of the cDNA encoding the human homologue of the DNA repair enzyme, Escherichia coli endonuclease III. J. Biol. Chem. 272, 6733–6740.PubMedCrossRefGoogle Scholar
  14. 14.
    Boiteux, S., O’Connor, T. R., Lederer, F., et al. (1990) Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites. J. Biol. Chem. 265, 3916–3922.PubMedGoogle Scholar
  15. 15.
    van der Kemp, P. A., Thomas, D., Barbey, R., et al. (1996) Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino4-hydroxy-5-N methylformamidopyrimidine. Proc. Natl. Acad. Sci. USA 93, 5197–5202.PubMedCrossRefGoogle Scholar
  16. 16.
    Lu, R., Nash, H. M., and Verdine, G. L. (1997) A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr. Biol. 7, 397–407.PubMedCrossRefGoogle Scholar
  17. 17.
    Franklin, W. A. and Lindahl, T. (1988) DNA deoxyribophosphodiesterase. EMBO J. 7, 3616–3622.Google Scholar
  18. 18.
    Matsumoto, Y. and Kim, K. (1995) Excision of deoxyribose phosphate residues by DNA polymerase β during DNA repair. Science 269, 699–702.PubMedCrossRefGoogle Scholar
  19. 19.
    Sandigursky, M. and Franklin, W. A. (1992) DNA deoxyribophosphodiesterase of Escherichia coli is associated with exonuclease I. Nucleic Acids Res. 20, 4699–4703.PubMedCrossRefGoogle Scholar
  20. 20.
    Dianov, G., Sedgwick, B., Daly, G., et al. (1994) Release of 5′-terminal deoxyribose-phosphate residues from incised abasic sites in DNA by the Escherichia coli RecJ protein. Nucleic Acids Res. 22, 993–998.PubMedCrossRefGoogle Scholar
  21. 21.
    Graves, R. J., Felzenszwalb, I., Laval, J., and O’Connor, T. R. (1992) Excision of 5′-terminal deoxyribose phosphate from damaged DNA is catalyzed by the Fpg protein of Escherichia coli. J. Biol. Chem. 267, 14,429–14,435.PubMedGoogle Scholar
  22. 22.
    Price, A. and Lindahl, T. (1991) Enzymatic release of 5′-terminal deoxyribose phosphate residues from damaged DNA in human cells. Biochemistry 30, 8631–8637.PubMedCrossRefGoogle Scholar
  23. 23.
    Feng, J., Crasto, C. J., and Matsumoto, Y. (1998) Deoxyribose phosphate excision by the N-terminal domain of the polymerase β: the mechanism revisited. Biochemistry 37, 9605–9611.PubMedCrossRefGoogle Scholar
  24. 24.
    Sandigursky, M., Yacoub, Y., Kelley, et al. (1997) The Drosophila ribosomal protein S3 contains a DNA deoxyribophosphodieserase (dRpase) activity. J. Biol. Chem. 272, 17,480–17,484.PubMedCrossRefGoogle Scholar
  25. 25.
    Sandigursky, M., Yacoub, A., Kelley, M. R., et al. (1997) The yeast 8-oxoguanine DNA glycosylase (Ogg1) contains a DNA deoxyribophosphodiesterase (dRpase) activity. Nucleic Acids Res. 25, 4557–4561.PubMedCrossRefGoogle Scholar
  26. 26.
    Demple, B., Johnson, A., and Fung, D. (1986) Exonuclease III and endonuclease IV remove 3′ blocks from DNA synthesis primers in H2O2-damaged Escherichia coli. Proc. Natl. Acad. Sci. USA 83, 7731–7735.PubMedCrossRefGoogle Scholar
  27. 27.
    Bernelot-Moens, C. and Demple, B. (1989) Multiple DNA repair activities for 3′deoxyribose fragments in Escherichia coli. Nucleic Acids Res. 17, 587–600.PubMedCrossRefGoogle Scholar
  28. 28.
    Shafritz, K. M., Sandigursky, M., and Franklin, W. A. (1998) Exonuclease IX of Escherichia coli. Nucleic Acids Res. 26, 2593–2597.PubMedCrossRefGoogle Scholar
  29. 29.
    Popoff, S. C., Spira, A. I., Johnson, A. W., and Demple, B. (1990) Yeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV. Proc. Natl. Acad. Sci. USA 87, 4193–4197.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Margarita Sandigursky
    • 1
  • William A. Franklin
  1. 1.Department of Radiology and Radiation OncologyAlbert Einstein College of MedicineBronx

Personalised recommendations