Advertisement

The Use of Resolvases T4 Endonuclease VII and T7 Endonuclease I in Mutation Detection

  • Jeffrey J. Babon
  • Matthew McKenzie
  • Richard G. H. Cotton
Part of the Methods in Molecular Biology™ book series (MIMB, volume 152)

Abstract

The use of resolvase enzymes to detect mutations (1) was developed in response to the demand for a method that could screen kilobase lengths of DNA for single nucleotide changes and small insertions and deletions. The method is a more simple, nontoxic alternative to the chemical cleavage of the mismatch (CCM) method (2) and as such, the techniques proceed along similar lines; heteroduplex formation then mismatch cleavage then electrophoresis to visualize the reaction products. Both techniques use as substrate, heteroduplexes generated by the melting and reannealing of query and control DNA, usually polymerase chain reaction (PCR) products, in the same tube. If the sequence of the two original DNA species differ at any nucleotide, then heteroduplex species will be generated with a base-pair mismatch at that position (see Fig. 1 ). These mismatches can be bound and the DNA cleaved by at least two resolvase enzymes, T4 endonuclease VII (1) and T7 endonuclease I (3), both bacteriophage enzymes with similar in vivo functions. The one-step binding and cleavage reaction replace the two-step CCM procedure that uses different chemicals in each stage that are not active in the same buffer and thus require a clean-up step in between. Another advantage of using resolvases rather than chemicals for this procedure is that the one enzyme can recognize all eight types of mismatches (a/a, t/t, c/c, g/g, a/g, t/g, a/c, t/c) (4), as well as small loops generated when the query DNA used to form the heteroduplex

Keywords

Total Digestion Heteroduplex Formation Query Trace Background Cleavage Mismatch Cleavage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Youil, R., Kemper B. W., and Cotton R. G. H. (1993) Screening for mutations by enzyme mismatch cleavage using T4 endonuclease VII. Am. J. Hum. Genet. 53, abst. 1257.Google Scholar
  2. 2.
    Cotton R. G. H., Rodrigues, N. R., and Campbell, R. D. (1998) Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc. Natl. Acad. Sci. 85, 4397–4401.CrossRefGoogle Scholar
  3. 3.
    Mashal, R. D., Koontz, J., and Sklar, J. (1996) Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat. Genet. 23, 177–183.Google Scholar
  4. 4.
    Solaro, P.C., Birkenkamp, K., Pfeiffer, P., and Kemper, B. (1993) Endonuclease VII of phage T4 triggers mismatch correction in vitro. J. Mol. Biol. 230, 868–877.PubMedCrossRefGoogle Scholar
  5. 5.
    Kleff, S. and Kemper, B. (1988) Initiation of heteroduplex-loop repair by T4-encoded endonuclease VII in vitro. EMBO J. 7, 1527–1535.PubMedGoogle Scholar
  6. 6.
    Kemper, B. and Garabett, M. (1981) Studies on T4-Head maturation. Eur. J. Biochem. 115, 123–131.PubMedCrossRefGoogle Scholar
  7. 7.
    Dickie, P., McFadden, G., and Morgan, A. R. (1987) The site-specific cleavage of synthetic Holliday junction analogues and related branched DNA structures by bacteriophage T7 endonuclease 1. J. Biol. Chem. 262, 14,826–14,836.PubMedGoogle Scholar
  8. 8.
    Kemper, B., Pottmeyer, S., Solaro, P., and Kosak H. (1990) Resolution of DNAsecondary structures by endonuclease VII (endo VII) from phage T4, in Human Genome Initiative and DNA Recombination, Vol.1, Structure and Methods, Adenine Press, New York.Google Scholar
  9. 9.
    Bhattacharyya A., Murchie A. I. H., von Kitzing E., et al. (1991) Model for the interaction of DNA junctions and resolving enzymes. J. Mol. Biol. 221, 1191–1207.PubMedCrossRefGoogle Scholar
  10. 10.
    Parsons, C. A., Kemper, B., and West, S. C. (1990) Interaction of a four-way junction in DNA with T4 endonuclease VII. J. Biol. Chem. 265, 9285–9289.PubMedGoogle Scholar
  11. 11.
    de Massey, B., Studier, F. W., Dorgai, I., Appelbaum, E., and Weisberg, R. A. (1985) Resolution of Holliday Structures by Endonuclease VII as observed in interactions with cruciform DNA. Cold Spring Harbor Symp. Quant. Biol. 49, 715–726.Google Scholar
  12. 12.
    Modrich, P. (1991) Mechanisms and biological effects of mismatch repair. Ann. Rev. Genet. 25, 229–253.PubMedCrossRefGoogle Scholar
  13. 13.
    Youil, R., Kemper, B., and Cotton, R. G. H. (1996) Detection of 81 of 81 known mouse b-globin promoter mutations with T4 endonuclease VII-the EMC method. Genomics 32, 431–435.PubMedCrossRefGoogle Scholar
  14. 14.
    Del Tito, B. J., Jr., Poff, H. E. 3rd, Novotny, M. A., et al. (1998) Automated fluorescent analysis procedure for enzymatic mutation detection. Clin. Chem. 44, 731–739.PubMedGoogle Scholar
  15. 15.
    Youil, R. and Cotton, R. G. H. (1996) EMC-enzyme mismatch cleavage, in Laboratory Protocols for Mutation Detection, Oxford University Press, Oxford, UK, pp. 65–68.Google Scholar
  16. 16.
    Yakubovskaya, M. G., Humphrey, K. E., Babon, J. J., et al. (2000) Phenomenon of diverse DNA structures appearing in concentrated DNA solutions after purification or heteroduplex formation procedure. Nucleic Acids Res., Science, submitted.Google Scholar
  17. 17.
    Biasotto, M., Meo, T., Tosi, M., and Verpy, E. (1996) FAMA fluorescenceassisted mismatch analysis by chemical cleavage, in Laboratory Protocols for Mutation Detection, Oxford University Press, Oxford, UK, pp. 54–60.Google Scholar
  18. 18.
    Babon, J. J., Youil, R., and Cotton, R. G. H. (1995) Improved strategy for mutation detection-A modification to the enzyme mismatch cleavage method. Nucleic Acids Res. 23, 5082–5084.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Jeffrey J. Babon
    • 1
  • Matthew McKenzie
    • 1
  • Richard G. H. Cotton
    • 1
  1. 1.Mutation Research CentreSt. Vincent’s HospitalMelbourneAustralia

Personalised recommendations