Advertisement

Radio-Isotopic In Situ Hybridization on Tissue Sections

Practical Aspects and Quantification
  • Antoon F. M. Moorman
  • Piet A. J. De Boer
  • Jan M. Ruijter
  • Jaco Hagoort
  • Diego Franco
  • Wouter H. Lamers
Part of the Methods in Molecular Biology™ book series (MIMB, volume 137)

Abstract

in situ hybridization has become a powerful tool for the analysis of gene expression within a topographical context and has become indispensable in developmental studies. Different strategies are to be used for different purposes. Whole mount in situ hybridization allows the rapid global analysis of changes in the spatiotemporal patterns of gene expression. Its use is limited to early developmental stages owing to penetration problems with increasing size of the embryo. Analysis of the precise location of the expressing cells requires subsequent sectioning of the stained embryo. Provided its sensitivity would be high enough, nonradioactive in situ hybridization would be the preferred choice owing to its superior resolving power. With the possible exception of early embryonic stages, it is our experience that the sensitivity of nonradioactive in situ hybridization on sections is inferior to that of the radio-isotopic procedure. Moreover, the sensitivity see ms probe-dependent and the signal is difficult to quantify.

Keywords

Dextran Sulfate Transcription Assay Anhydrous Calcium Sulfate Dilute Emulsion Calibration Slide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wilkinson, D. G. (1992) in situ Hybridization: A Practical Approach, IRL, Oxford, UK.Google Scholar
  2. 2.
    Wilcox, J. N. (1993) Fundamental principles of in situ hybridization. J. Histochem. Cytochem. 41, 1725–1733.PubMedGoogle Scholar
  3. 3.
    Moorman, A. F. M., de Boer, P. A. J., Vermeulen, J. L. M., and Lamers, W. H. (1993) ractical aspects of radio-isotopic in situ hybridization on RNA. Histochem. J. 25, 251–260.PubMedCrossRefGoogle Scholar
  4. 4.
    Jonker, A., de Boer, P. A. J., van den Hoff, M. J. B., Lamers, W. H., and Moorman, A. F. M. (1997) Towards quantitative in situ hybridisation. J. Histochem. Cytochem. 45, 413–423.PubMedGoogle Scholar
  5. 5.
    de Groot, C. J., Zonneveld, D., de Laaf, R. T. M., Dingemanse, M. A., Mooren, P. G., Moorman, A. F. M., Lamers, W. H., and Charles, R. (1986) Developmental and hormonal regulation of carbamoylphosphate synthetase gene expression in rat liver: evidence for control mechanisms at different levels in the perinatal period. Biochim. Biophys. Acta 866, 61–67.PubMedGoogle Scholar
  6. 6.
    van den Hoff, M. J. B., Lekanne dit Deprez, R. H., Monteiro, M., de Boer, P. A. J., Charles, R., and Moorman, A. F. M. (1997) Developmental changes in rat cardiac DNA, RNA and protein tissue base: Implications for the interpretation of changes in gene expression. J. Mol. Cell. Cardiol. 29, 629–639.PubMedCrossRefGoogle Scholar
  7. 6a.
    Habets, P. E. M. H., Franco, D., Ruijter, J. M., Sargent, A. J., Sant’Ana Pereira, J. A. A., and Moorman, A. F. M. (1999) RNA content differs in slow and fast fibers: Implications for interpretation of changes in muscle gene expression. J. Histochem. Cytochem. 47, 995–1004.PubMedGoogle Scholar
  8. 7.
    Henderson, C. (1989) Aminoalkylisane: an inexpensive, simple preparation for slide adhesion. J. Histotechnol. 12, 123–124.Google Scholar
  9. 8.
    Holland, P. (1986) Manipulating the Mouse Embryo: A Laboratory Manual (Hogan, B., Constantini, F., and Lacy, E. eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 228–242.Google Scholar
  10. 9.
    Moorman, A. F. M., Vermeulen, J. L. M., Koban, M. U., Schwartz, K., Lamers, W. H., and Boheler, K. R. (1995) Patterns of expression of sarcoplasmic reticulum Ca2+ATPase and phospholamban mRNAs during rat heart development. Circ. Res. 76, 616–625.PubMedGoogle Scholar
  11. 10.
    Franco, D., Kelly, R., Moorman, A. F. M., and Buckingham, M. (1997) Regionalised transcriptional domains of myosin light chain 3F transgenes in the embryonic mouse heart: morphogenetic implications. Dev. Biol. 188, 17–33.PubMedCrossRefGoogle Scholar
  12. 11.
    Rogers, A. W. (1979) Techniques of Autoradiography, Elsevier, Amsterdam, The Netherlands.Google Scholar
  13. 12.
    Chieco, P., Jonker, A., Melchiorri, C., Vanni, G., and van Noorden, C. J. F. (1994) A user’s guide for avoiding errors in absorbance image cytometry: a review with original experimental observations. Histochem. J. 26, 1–19.PubMedGoogle Scholar
  14. 13.
    Ornstein, L. (1952) The distributional error in microspectrophotometry. Lab. Invest. 1, 250–262.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Antoon F. M. Moorman
    • 1
  • Piet A. J. De Boer
    • 1
  • Jan M. Ruijter
    • 1
  • Jaco Hagoort
    • 1
  • Diego Franco
    • 1
  • Wouter H. Lamers
    • 1
  1. 1.Department of Anatomy and EmbryologyAcademic Medical CenterAmsterdamThe Netherlands

Personalised recommendations