Identification, Characterization, and Differentiation of Human Prostate Cells

  • Parmender P. Mehta
  • Carlos Perez-Stable
  • Bernard A. Roos
  • Mehrdad Nadji
Part of the Methods in Molecular Biology™ book series (MIMB, volume 137)


The prostate is organized as a classical exocrine gland and is composed of a complex array of ductal-acinar structures embedded in stroma. The ducts and acini are lined by the secretory and nonsecretory epithelial cells, whereas stroma comprises of smooth muscle cells, fibroblasts, and blood vessels. The major secretory cells in the prostate are the luminal epithelial cells, which face the lumen of ducts and acini and supply approx 30% of the seminal fluid components. The nonsecretory epithelial cells, called basal epithelial cells, lie below the luminal epithelial cells and rest on the basement membrane, which separates the prostatic epithelium from the surrounding stroma (1,2). The luminal epithelial cells are highly differentiated cells that express prostatespecific antigen (PSA; ref. 37), cytokeratins 8 and 18 (8,9), and the nuclear androgen receptor (AR; ref. 2 and 10). In contrast to luminal epithelial cells, basal epithelial cells do not express PSA and AR but express cytokeratins 5 and 14 (8,9), P-cadherin (11), Bcl2 (12), and c-met (13,14). The function of basal epithelial cells during prostate morphogenesis is unknown, although a putative stem cell role has been suggested (15). Although prostatic epithelium is formed of two major compartments comprising basal and luminal cells, it also contains a minor component of cells of unknown function with distinct neuroendocrine characteristics, which can be distinguished from surrounding epithelial cells as they express neuroendocrine markers, such as chromagranin A and neurone-specific enolase (16,17). The smooth muscle cells, fibroblasts, and the endothelial cells in the blood vessels of prostate stroma can be distinguished from one


Reverse Transcription Polymerase Chain Reaction Prostate Tissue Prostate Epithelial Cell RNase Protection Assay Luminal Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McNeal, J. E. (1988) Normal histology of the prostate. Am. J. Surg. Pathol. 12, 619–633.PubMedCrossRefGoogle Scholar
  2. 2.
    Cunha, G. R., Donjacour, A. A., Cooke, P. S., Mee, S., Bigsby, R. M., Higgins, S. J., and Sugimura, Y. (1987) The endocrinology and developmental biology of the prostate. Endocr. Rev. 8, 338–362.PubMedCrossRefGoogle Scholar
  3. 3.
    Papsidero, L. D., Kuriyama, M., Wang, M. L., Horoszewicz, J. S., Leong, S. S., Valenzuela, L., et al. (1981) Prostate antigen: a marker for human prostate epithelial cells. J. Natl. Cancer Inst. 66, 37–42.PubMedGoogle Scholar
  4. 4.
    Nadji, M., Tabei, Z., Castro, A., and Morales, A. R. (1979) Immunohistochemical demonstration of prostatic origin of malignant neoplasm. Lancet 1, 671–672.PubMedCrossRefGoogle Scholar
  5. 5.
    Nadji, M., Tabei, S. Z., Castro, A., Chu, T. M., and Morales, A. R. (1980) Prostatic origin of tumors. An immunohistochemical study. Am. J. Clin. Pathol. 73, 735–739.PubMedGoogle Scholar
  6. 6.
    Nadji, M. and Morales, A. R. (1984) Immunohistologic markers for prostate cancer. Ann. NY Acad. Sci. 420, 134–139.CrossRefGoogle Scholar
  7. 7.
    Nadji, M., Tabei, S. Z., Castro, A., Chu, T. M., Murphy, G. P., Wang, M. C., and Morales, A. R. (1981) Prostate-specific antigen: an immunohistologic marker for prostatic neoplasms. Cancer 48, 1229–1232.PubMedCrossRefGoogle Scholar
  8. 8.
    Sherwood, E. R., Berg, L. A., Mitchell, N. J., McNeal, J. E., Kozlowski, J. M., and Lee, C. (1990) Differential cytokeratin expression in normal, hyperplastic and malignant epithelial cells from human prostate. J. Urol. 143, 167–171.PubMedGoogle Scholar
  9. 9.
    Nagle, R. B., Ahmann, F. R., McDaniel, K. M., Paquin, M. L., Clark, V. A., and Celniker, A. (1987) Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer Res. 47, 281–286.PubMedGoogle Scholar
  10. 10.
    Cunha, G. R., Alarid, E. T., Turner, T., Donjacour, A. A., Boutin, E. E., and Foster, B. A. (1992) Normal and abnormal development of the male urogenital tract. Role of androgens, mesenchymal-epithelial interactions, and growth factors. J. Androl. 13, 465–475.PubMedGoogle Scholar
  11. 11.
    Jarrard, D. F., Paul, R., van Bokhoven, A., Nguyen, S. H., Bova, G. S., Whellock, M. J., et al. (1997) P-cadherin is a basal cell-specific epithelial marker that is not expressed in prostate cancer. Clin. Cancer Res. 3, 2121–2128.PubMedGoogle Scholar
  12. 12.
    McDonnell, T. J., Troncoso, P., Brisbay, S. M., Logothetis, C., Chung, L. W. K., Hsieh, J.-T., et al. (1992) Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 52, 6940–6944.PubMedGoogle Scholar
  13. 13.
    Pisters, L. L., Troncosa, P., Zhau, H. E., Li, W., von Eschenbach, A. C., and Chung, L. W. K. (1995) C-Met proto-oncogene expression in benign and malignant human prostate tissues. J. Urol. 154, 293–298.PubMedCrossRefGoogle Scholar
  14. 14.
    Humphrey, P. A., Zhu, X., Zarnegar, R., Swanson, P. E., Ratliff, T. L., Vollmer, R. T., and Day, M. L. (1995) Hepatocyte growth factor and its receptor (C-Met) in prostatic carcinoma. Am. J. Pathol. 147, 386–396.PubMedGoogle Scholar
  15. 15.
    Bonkhoff, H. and Remberger, K. (1996) Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 28, 98–106.PubMedCrossRefGoogle Scholar
  16. 16.
    Di Sant Agnese, P. A. (1992) Neuroendocrine differentiation in human prostate carcinoma. Hum. Pathol. 23, 287–296.CrossRefGoogle Scholar
  17. 17.
    Gkonos, P. J., Krongrad, A., and Roos, B. A. (1995) Neuroendocrine peptides in the prostate. Urol. Res. 23, 81–87.PubMedCrossRefGoogle Scholar
  18. 18.
    Isaacs, W. B., Bova, G. S., Morton, R. A., Bussemakers, M. J. G., and Ewing, C. M. (1994) Molecular biology of prostate cancer. Semin. Oncol. 21, 514–521.PubMedGoogle Scholar
  19. 19.
    Peehl, D. M. (1992) Culture of human prostatic epithelial cells, in Culture of Epithelial Cells (Freshney, R. I., ed.), ch. 7, Wiley-Liss, New York, pp. 159–180.Google Scholar
  20. 20.
    Mehta, P. P., Lokeshwar, B. L., Schiller, P. C., Bendix, M. V., Ostenson, R. C., Howard, G. A., and Roos, B. A. (1996) Gap-junctional communication in normal and neoplastic prostate epithelial cells and its regulation by cAMP. Mol. Carcinog. 15, 18–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Webber, M. M., Bello, D., and Quader, S. (1996) Immortalized and tumorigenic adult human prostate epithelial cell lines: characteristics and applications. Part 1. Cell markers and immortalized nontumorigenic cell lines. Prostate 29, 386–394.PubMedCrossRefGoogle Scholar
  22. 22.
    Webber, M. M., Bello, D., and Quader, S. (1997) Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications. Part 2. Tumorigenic cell lines. Prostate 30, 58–64.PubMedCrossRefGoogle Scholar
  23. 23.
    Webber, M. M., Bello, D., and Quader, S. (1997) Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and application. Part 3. Oncogenes, suppressor genes, and applications. Prostate 30, 136–142.PubMedCrossRefGoogle Scholar
  24. 24.
    Fajardo, L. F. (1989) Special report: the complexity of endothelial cells. Am. J. Clin. Pathol. 92, 241–250.PubMedGoogle Scholar
  25. 25.
    Fong, C.-J., Sherwood, E. R., Sutkowski, D. M., Abu-Jawdeh, G. M., Yokoo, H., Bauer, K. D., et al. (1991) Reconstituted basement membrane promotes morphological and functional differentiation of primary human prostatic epithelial cells. Prostate 19, 221–235.PubMedCrossRefGoogle Scholar
  26. 26.
    Webber, M. M., Bello, D., Kleinman, H. K., Wartinger, D. D., Williams, D. E., and Rhim, J. S. (1996) Prostate specific antigen and androgen receptor induction and characterization of an immortalized adult human prostatic epithelial cell line. Carcinogenesis 17, 1641–1646.PubMedCrossRefGoogle Scholar
  27. 27.
    Nadji, M. and Morales, A. R. (1983) Immunoperoxidase: Part 1. The technique and its pitfalls. Lab. Med. 14, 767–771.Google Scholar
  28. 28.
    Nadji, M. and Morales, A. R. (1984) Immunoperoxidase: Part 2. Practical applications. Lab. Med. 15, 33–37.Google Scholar
  29. 29.
    Nadji, M. (1986) Immunoperoxidase techniques. I. Facts and artifacts. Am. J. Dermatopathol. 8, 32–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Nadji, M. and Ganjei, P. (1990) Immunocytochemistry in diagnostic cytology: a 12 year perspective. Am. J. Clin. Pathol. 94, 470–475.PubMedGoogle Scholar
  31. 31.
    Nadji, M. and Morales, A. R. (1998) Immunohistochemical techniques, in Principles and Practice of Surgical Pathology and Cytopathology (Silverberg, E. G., ed.), vol. 1, ch. 5, Churchill Livingston, New York, pp. 63–75.Google Scholar
  32. 32.
    Jones, E. L. and Gregory, J. (1989) Immunoperoxidase techniques, in Antibodies (Catty, D., ed.), vol. 2, ch. 5, Oxford University, New York, pp. 155–177.Google Scholar
  33. 33.
    Lundwall, A. and Lilja, H. (1987) Molecular cloning of human prostate specific antigen cDNA. FEBS Lett. 214, 317–322.PubMedCrossRefGoogle Scholar
  34. 34.
    Fan, H., Oro, A. E., Scott, M. P., and Khavari, P. A. (1997) Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog. Nature Med. 3, 788–792.PubMedCrossRefGoogle Scholar
  35. 35.
    Leube, R. E., Bosch, F. X., Romano, V., Zimbelmann, R., Hofler, H., and Franke, W. W. (1986) Cytokeratin expression in simple epithelia. III. Detection of mRNAs encoding human cytokeratins nos. 8 and 18 in normal and tumor cells by hybridization with cDNA sequences in vitro and in situ. Differentiation 33, 69–85.PubMedCrossRefGoogle Scholar
  36. 36.
    Noonan, K. E., Beck, C., Holzmayer, T. A., Chin, J. E., Wunder, J. S., Andrulis, I. L., et al. (1990) Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 7160–7164.PubMedCrossRefGoogle Scholar
  37. 37.
    Tille, W. D., Marcelli, M., Wilson, J. D., and McPhaul, M. J. (1989) Characterization and expression of cDNA encoding the human androgen receptor. Proc. Natl. Acad. Sci. USA 86, 327–331.CrossRefGoogle Scholar
  38. 38.
    Mehta, P. P., Perez-Stable, C., Nadji, M., Asotra, K., and Roos, B. A. (1999) Suppression of human prostate cancer cell growth by forced expression of connexin genes. Dev. Genet. 24, 91–110.PubMedCrossRefGoogle Scholar
  39. 39.
    Harlow, E. and Lane, D. (1988) Antibodies. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  40. 40.
    Neugebaur, J. M. (1990) Detergents: an overview, in Methods in Enzymology (Deutscher, M. P., ed.) vol. 182, ch. 18, Academic, New York, pp. 239–253.Google Scholar
  41. 41.
    Catty, D. (1988) Properties of antibodies and antigens, in Antibodies (Catty, D., ed.), vol. 1, ch. 1, Oxford University, New York, pp. 7–18.Google Scholar
  42. 42.
    Catty, D. and Raykundalia, C. (1988) Production and quality control of polyclonal antibodies, in Antibodies (Catty, D., ed.), vol. 1, ch. 2, Oxford University, New York, pp. 19–79.Google Scholar
  43. 43.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  44. 44.
    Blumberg, D. D. (1987) Creating a ribonuclease-free environment, in Methods in Enzymology (Berger, S. L. and Kimmel, A. R., eds.), vol. 152, ch. 2, Academic, New York, pp. 21–24.Google Scholar
  45. 45.
    Wallace, D. M. (1987) Precipitation of nucleic acids, in Methods in Enzymology (Berger, S. L. and Kimmel, A. R., eds.), vol. 152, ch. 5, Academic, New York, pp. 41–48.Google Scholar
  46. 46.
    Wallace, D. M. (1987) Large-and small-scale phenol extractions, in Methods in Enzymology (Berger, S. L. and Kimmel, A. R., eds.), vol. 152, ch. 4, Academic, New York, pp. 33–41.Google Scholar
  47. 47.
    Berger, S. L. (1987) Quantifying 32P-labeled and unlabeled nucleic acids, in Methods in Enzymology (Berger, S. L. and Kimmel, A. R., eds.), vol. 152, ch. 6, Academic, New York, pp. 49–55.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Parmender P. Mehta
    • 1
  • Carlos Perez-Stable
    • 1
  • Bernard A. Roos
    • 1
  • Mehrdad Nadji
    • 1
  1. 1.Department of Medicine, Sylvester Comprehensive Cancer CenterUniversity of Miami School of Medicine; and Geriatric Research,Education, and Clinical Center and Research ServiceMiami

Personalised recommendations