Electrospray Mass Spectrometry for Mycotoxin Detection and Purity Analysis

  • Jon G. Wilkes
  • Jackson O. LayJr.
Part of the Methods in Molecular Biology™ book series (MIMB, volume 157)


Gas Liquid Chromatography (GLC) has been used to separate a few mycotoxin types: trichothecenes, zearalenone, patulin, and anthraquinones (1, 2, 3, 4, 5, 6, 7, 8, 9). In contrast, most of the known mycotoxins are amenable to high performance liquid chromatographic (HPLC) separation (10). Accordingly, Frisvad and Thrane developed a general reversed-phase HPLC analysis procedure for simultaneous separation and detection of 182 mycotoxins and other fungal metabolites (10). This very versatile approach involved the temporal spectroscopic (UV) detection of the chromatographically separated mycotoxins. However, some recently identified mycotoxin classes, (fumonisins and AAL toxins) although amenable to HPLC separation, lack the UV chromophores required for detection using this method. For these toxins, HPLC analysis is most easily accomplished using another approach for the detection step. Electrospray ionization (ES) mass spectrometry (MS) is well suited for mycotoxin analysis, especially for the larger, less volatile toxins not amenable to gas chromatography (GC) and particularly for those like the fumonisins and AAL toxins lacking strong UV chromophores. Moreover ES is an ionization method developed in response to the need for direct MS characterization of HPLC separated components.


High Performance Liquid Chromatographic High Performance Liquid Chromatographic High Performance Liquid Chromatographic System Evaporative Light Scatter Detection High Performance Liquid Chromatographic Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vesonder, R. F. and Rohwedder, W. K. (1986) Modern Methods in the Analysis and Structure Elucidation of Mycotoxins (Cole, R. J., ed.), Academic Press, New York, London, p. 335.Google Scholar
  2. 2.
    Eijk, G. W. and Roeijmans, H. J. (1984) Separation and identification of naturally occurring anthraquinones by capillary gas chromatography and gas chromatography mass spectrometry. J. Chromatogr. 295(2), 497–502.CrossRefGoogle Scholar
  3. 3.
    Wreford, B. J. and Shaw, K. J. (1988) Analysis of deoxynivalenol as its trifluoroacetyl ester by gas chromatography-electron ionization mass spectrometry. FoodAddit. Contam. 5(2), 141–147Google Scholar
  4. 4.
    Chichila, T. M., Silvestre, D.. Covey, T. R., and Henion, J. D. (1988) Distribution of zeranol in bovine tissues determined by selected ion monitoring capillary gas chromatography/mass spectrometry. J. Anal. Toxicol. 12(6), 310–318.PubMedGoogle Scholar
  5. 5.
    Usleber, E., Bramson, D., Gessler, R., Smith, D. M., Clear, R. M., and Martlbauer, E. (1996), Natural contamination of Manitoba barley by 3,15-diacetyldeoxyni-valenol and its detection by immunochromatography. App. Environ. Microbiol. 62(10), 3858–3860.Google Scholar
  6. 6.
    Clear, R. M., Patrick, S. K., Nowicki, T., Gaba, D., Edney, M., and Babb, J. C. (1997) The effect of hull removal and pearling on Fusarium species and trichothecenes in hulless barley. Can. J. Plant Sci. 77(1), 161–166.Google Scholar
  7. 7.
    Liu, W. Z., Sundheim, L., and Langseth, W. (1998) Trichothecene production and the relationship to vegetative compatibility groups in Fusarium poae. Mycopathologia 140(2), 105–114.CrossRefGoogle Scholar
  8. 8.
    Ryu, J. C., Yang, J. S., Song, Y. S., Kwon, O. S., Park, J., and Chang, I. M. (1996) Survey of the natural occurrence of trichothecene mycotoxins and zearalenone in Korean cereals harvested in 1992 using gas chromatography mass spectrometry. FoodAddit. Contam. 13(3), 333–341.Google Scholar
  9. 9.
    Pineiro, M. S., Scott, P. M., and Kanhere, S. R. (1995) Mycotoxin producing potential of Fusarium graminearium isolates from Uruguayan barley. Mycopathologia 132(3), 167–172.PubMedCrossRefGoogle Scholar
  10. 10.
    Frisvad, J. C. and Thrane, U. (1987) Standardized high performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV-VIS spectra (diode array detection). J. Chromatogr. 404, 195–214.PubMedCrossRefGoogle Scholar
  11. 11.
    Scholl, P. F., Musser, S. M., and Groopman, J. D. (1997) Synthesis and characterization of aflatoxin B1 mercapturic acids and their identification in rat urine. Chem. Res. Toxicol. 10, 1144–1151.PubMedCrossRefGoogle Scholar
  12. 12.
    Pócsfalvi, G., Dilandi, G., Ferranti, P., Ritieni, A., Randazzo, G., and Malorni, A. (1997) Observation of noncovalent interactions between beauvaricin and oligo-nucleotides using electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 11(3), 265–272.PubMedCrossRefGoogle Scholar
  13. 13.
    Straub, R. F. and Voyksner, R. D. (1993) Negative ion formation in electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 4, 578–587.CrossRefGoogle Scholar
  14. 14.
    Korfmacher, W. A, Chiarelli, M. P., Lay, Jr., J. O., Bloom, J., and Holcomb, M. (1991) Characterization of the mycotoxin fumonisin B1: comparison of thermospray, fast-atom bombardment and electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 5, 463–468.PubMedCrossRefGoogle Scholar
  15. 15.
    Doerge, D. R., Howard, P. C., Bajic, S., and Preece, S. (1994) Determination of fumonisins using on-line chromatography coupled to electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 8, 603–606.CrossRefGoogle Scholar
  16. 16.
    Plattner, R. D. (1995) Detection of fumonisins produced in Fusarium moniliforme cultures by HPLC with electrospray MS and evaporative light scattering detectors. Natural Toxins 3, 294–298.PubMedCrossRefGoogle Scholar
  17. 17.
    Josephs, J. L. (1996) Detection and characterization of fumonisin mycotoxins by liquid chromatography/electrospray ionization using ion trap and triple quadrupole mass spectrometry. Rapid Commun. Mass Spectrom. 10, 1333–1344.PubMedCrossRefGoogle Scholar
  18. 18.
    Munday-Finch, S. C., Wilkins, A. L., Miles, C. O., Ede, R. M., and Thomson, R. A. Sep, (1996) Structure elucidation of lolitrem F, a naturally occurring stereoisomer of the tremorgenic mycotoxin lolitrem B, isolated from Lolium perenne infected with Acremonium lolii. J. Agri. Food Chem. 44(9), 2782–2788.CrossRefGoogle Scholar
  19. 19.
    Ominski, K. H., Frohlich, A. A., Marquardt, R. R., Crow, G. H., and Abramson, D. (1996) The incidence and distribution of ochratoxin A in western Canadian swine. Food Add. Contam. 13(2), 185–198.Google Scholar
  20. 20.
    Scott, P. M., Kanhere, S. R., Lau, B. P. Y., Lewis, D. A., Hayward, S., Ryan, J. J., and Kuiper-Goodman, T. (1998) Survey of Canadian human blood plasma for ochratoxin A. Food Add. Contam. 15(5), 555–562.Google Scholar
  21. 21.
    Rychlik, M. and Schieberle, P. (1998) Synthesis of 13C-labeled patulin [4-hydroxy-4H-furo[3,2-c]pyran-2(6H)-one] to be used as internal standard in a stable isotope dilution assay J. Agric. Food Chem. 46, 5163–5169.CrossRefGoogle Scholar
  22. 22.
    Moats, W. A. and Romanowski, R. D. (1998) Multiresidue determination of β-lactam antibiotics in milk and tissues with the aid of high-performance liquid chromatographic fractionation for clean up, J. Chromatogr. A 812(1-2), 237–247.PubMedCrossRefGoogle Scholar
  23. 23.
    Keever, J., Voyksner, R. D., and Tyczkowska, K. L. (1998) Quantitative determination of ceftiofur in milk by liquid chromatography electrospray mass spectrom-etry. J. Chromatogr. A 794(1-2), 57–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Hormazabal, V. and Ynstead, M. (1998) Determination of benzylpenicillin and other β-lactam antibiotics in plasma and tissues using liquid chromatography mass spectrometry for residual and pharmacokinetic studies. J. Liq. Chromatogr. Related Technol. 21(20), 3099–3110.CrossRefGoogle Scholar
  25. 25.
    Scudamore, K. A., Hetmanski, M. T., Clarke, P. A., Narnes, K. A., and Startin, J. R. (1996) Analytical methods for the determination of sterigmatocystin in cheese, bread and corn products using HPLC with atmospheric pressure ionization mass spectrometric detection. Food Add. Contam. 13(3), 343–358.Google Scholar
  26. 26.
    Tuomi, T., Saarinen, L., and Reijula, K. (1998) Detection of polar and macrocyclic trichothecene mycotoxins from indoor environments. Analyst 123(9), 1835–1841.PubMedCrossRefGoogle Scholar
  27. 27.
    Rosenberg, E., Krska, R., Wissiack, R., Kmetov, V., Josephs, R., Razzazi, E., and Grasserbauer, M. (1998) High-performance liquid chromatography-atmospheric-pressure chemical ionization mass spectrometry as a tool for the determination of the mycotoxin zearalenone in food and feed. J. Chromatogr. A 819, 277–288.PubMedCrossRefGoogle Scholar
  28. 28.
    Musser, S. M. (1996) Quantitation and identification of fumonisins by liquid chromatography mass spectrometry. Adv. Exp. Med. Biol. 392, 65–74.PubMedGoogle Scholar
  29. 29.
    Meredith, F. I., Bacon, C. W., Plattner, R. D., and Norred, W. P. (1996) Preparative LC isolation and purification of fumonisin B1 from rice culture. J. Agric. Food Chem. 44, 195–198.CrossRefGoogle Scholar
  30. 30.
    Wilkes, J. G., Sutherland, J. B., Churchwell, M. I., and Williams, A. J. (1995) Determination of fumonisins B1, B2, B3, and B4 by high-performance liquid chromatography with evaporative light scattering detection. J. Chromatogr. A 695, 319–323.PubMedCrossRefGoogle Scholar
  31. 31.
    Wilkes, J. G. and Sutherland, J. B. (1998) Sample preparation and high resolution separation of mycotoxins possessing carboxyl groups, (review). J. Chromatogr. B 717, 135–156.Google Scholar
  32. 32.
    Wilkes, J. G., Churchwell, M. I., Billedeau, S. M., Vollmer, D. L., Volmer, D. A., Thompson, Jr., H. C., and Lay, Jr., J. O. (1996) Determination of underivatized fumonisin B1 and related compounds by HPLC, in Fumonisin in Foods (Lauren Jackson et al., eds.), Plenum, New York, pp. 93–103.Google Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Jon G. Wilkes
    • 1
  • Jackson O. LayJr.
    • 1
  1. 1.National Center for Toxicological ResearchFood and Drug AdministrationJefferson

Personalised recommendations