Electron Cryomicroscopy of Fibrillar Collagens

  • Roger S. Meadows
  • David F. Holmes
  • Chris J. Gilpin
  • Karl E. Kadler
Part of the Methods in Molecular Biology™ book series (MIMB, volume 139)


Collagen fibrils in tissue are generally heterotypic with more than one type of collagen molecule incorporated into the fibril structure. Furthermore specific macromolecules are bound onto the fibril surface influencing both the assembly and the interaction of the fibril with the surrounding matrix. The electron cryomicroscopy procedures described here form part of a program of work to determine the structure and assembly of tissue fibrils containing surface-associated components.


Collagen Fibril Stereo Pair Agar Scientific Contrast Transfer Function Formvar Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chapman, J. A., Tzaphlidou, M., Meek, K. M., and Kadler, K. E. (1990) The collagen fibril-a model system for studying the staining and fixation of a pro-tein. Electron Microsc. Rev. 3, 143–182.PubMedCrossRefGoogle Scholar
  2. 2.
    Holmes, D. F., Watson, R. B., Steinmann, B., and Kadler, K. E. (1993) Ehlers Danlos syndrome type VIIB. Morphology of type I collagen fibrils is determined by the conformation of the N-propeptide. J. Biol. Chem. 268. 15,758–15,765.PubMedGoogle Scholar
  3. 3.
    Holmes, D. F., Chapman, J. A., Prockop, D. J., and Kadler, K. E. (1992) Growing tips of type I collagen fibrils formed in vitro are near-paraboloidal in shape, implying a reciprocal relationship between accretion and diameter. Proc. Natl. Acad. Sci. USA 89, 9855–9859.PubMedCrossRefGoogle Scholar
  4. 4.
    Dubochet, J., Adrian, M., Chang, J. J., Homo, J. C., Lepault, J., McDowall, A. W., and Schultz, P. (1988) Cryo-electron microscopy of vitrified specimens. Quart. Rev. Biophys. 21, 129–228.CrossRefGoogle Scholar
  5. 5.
    Raspanti, M., Alessandrini, A., Gobbi, P., and Ruggeri, A. (1996) Collagen fibril surface: TMAFM, FEG-SEM and freeze-etching observations. Microsc. Res. Techn. 35, 87–93.CrossRefGoogle Scholar
  6. 6.
    Heuser, J. (1989) Procedure for 3-D visualisation of molecules on mica via the quick-freeze, deep-etch technique. J. Electron Microsc. Techn. 13, 244–263.CrossRefGoogle Scholar
  7. 7.
    Bellare, J. R., Davis, H. T., Scriven, L. E., and Talmon, Y. (1988) Controlled environmental vitrification system: an improved sample preparation technique. J. Electron Microsc. Techn. 10. 87–111.CrossRefGoogle Scholar
  8. 8.
    Holmes, D. F., Capaldi, M. J., and Chapman, J. A. (1986) Reconstitution of col-lagen fibrils in vitro; the assembly process depends on the initiating procedure. Int. J. Biol. Macromol. 8, 161–166.CrossRefGoogle Scholar
  9. 9.
    Sherratt, M., Graham, H. K., Kielty, C. M., and Holmes, D. F. (1999) ECM mac-romolecules: rotary shadowing and scanning transmission electron microscopy. Methods in Molecular Biology, Extracellular Matrix Protocols (Streuli, C. and Grant, M., ed.), Humana Press, Totowa, NJ.Google Scholar
  10. 10.
    Schröder, R. R., Hofmann, W., and Menetret, J. F. (1990) Zero-loss energy filter-ing as improved imaging mode in cryoelectron microscopy of frozen hydrated specimens. J. Struct. Biol. 105. 28–34.CrossRefGoogle Scholar
  11. 11.
    Langmore, J. P. and Smith, M. F. (1992) Quantitative energy-filtered electron microscopy of biological molecules in ice. Ultramicroscopy 46, 349–373.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Roger S. Meadows
    • 1
  • David F. Holmes
    • 1
  • Chris J. Gilpin
    • 1
  • Karl E. Kadler
    • 1
  1. 1.School of Biological SciencesUniversity of ManchesterManchesterUK

Personalised recommendations