Screening for Mutations in Cartilage ECM Genes

  • Michael D. Briggs
Part of the Methods in Molecular Biology™ book series (MIMB, volume 139)


Genetic disorders of cartilage (chondrodysplasias) are a clinically and genetically heterogeneous group of diseases ranging in severity from relatively mild to severe and lethal forms (1-2). There are over 100 unique well-characterized chondrodysplasia phenotypes and remarkable progress has been made in the last few years identifying the underlying genetic basis of many of these disorders (3). In most cases, a molecular genetics approach was employed involving a combination of genetic linkage mapping, positional (candidate) cloning and DNA sequence analysis (4-9). By its nature this approach requires extensive mutation screening in any potential candidate gene, first to determine if it is the disease gene and then subsequently to identify a range of disease causing mutations. In chondrodysplasia phenotypes this approach has been hampered by a difficulty in obtaining appropriate pathological tissue, such as cartilage, for the isolation of mRNA. This problem is compounded by the complex genomic structure of many genes that encode cartilage structural ECM molecules. For most cartilage diseases, a combination of these difficulties has necessitated screening for mutations in a large numbers of exons using a variety of techniques such as single-stranded conformational polymorphism (SSCP) (10), conformational sensitive gel electrophoresis (CSGE) (11), heteroduplex (12) and chemical cleavage mismatch (CCM) analysis (13).


Polymerase Chain Reaction Product Cartilage Oligomeric Matrix Protein Purify Polymerase Chain Reaction Product Xylene Cyanol Cartilage Oligomeric Matrix Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    International Working Group on Constitutional Diseases of Bone (1992) International classification of osteochondrodysplasias. Am. J. Med. Genet. 44, 223–229.CrossRefGoogle Scholar
  2. 2.
    Rimoin, D. L. and Lachman, R. S. (1993) Genetic disorders of the osseous skeleton, in McKusick’s Heritable Disorders of Connective Tissue, 5th ed. (Beighton, P., ed.), Mosby-Year Book, Inc., St. Louis, MO, pp. 557–689.Google Scholar
  3. 3.
    Francomano, C. A., McIntosh, I., and Wilkin, D. J. (1996) Bone dysplasias in man: molecular insights. Curr. Opinion Genes Dev. 6, 301–308.CrossRefGoogle Scholar
  4. 4.
    Muragaki, Y., Mariman, E. C. M., van Beersum, S. E. C., Perala, M., van Mourik, J. B. A., Warman, M. L., et al. (1996) A mutation in the gene encoding the alpha-2 chain of the fibril-associated collagen IX, COL9A2, causes multiple epiphyseal dysplasia (EDM2). Nat. Genet. 12, 103–105.Google Scholar
  5. 5.
    Hecht, J. T., Nelson, L. D., Crowder, E., Wang, Y., Elder, F. F. B., Harrison, W. R., et al. (1995) Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat. Genet. 10, 325–329.PubMedCrossRefGoogle Scholar
  6. 6.
    Briggs, M. D., Hoffman, S. M. G., King, L. M., Olsen, A. S., Mohrenweiser, H., Leroy, J. G., et al. (1995) Pseudoachondroplasia and multiple epiphyseal dyspla-sia due to mutations in the cartilage oligomeric matrix protein gene. Nat. Genet. 10, 330–336.PubMedCrossRefGoogle Scholar
  7. 7.
    Vikkula, M., Mariman, E. C. M., Lui, V. C. H., Zhidkova, N. I., Tiller, G. E., Goldring, M.B. van Beersum, S. E. C., de Waal, Malefijt, M. C., et al. (1995) Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell 80, 431–437.PubMedCrossRefGoogle Scholar
  8. 8.
    Hästbacka, J., de la Chapella, A., Mahtani, M. M., Clines, G., Reeve-Daly, M. P., Daly, M., et al. (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78, 1073–1087.PubMedCrossRefGoogle Scholar
  9. 9.
    Warman, M. L., Abbott, M., Apte, S. S., Hefferon, T. W., McIntosh, I., Cohn, D. H., et al. (1993) A mutation in the human type X collagen gene in a family with Schmid metaphyseal chondrodysplasia. Nat. Genet. 5, 79–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya, K. (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-stranded conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770.PubMedCrossRefGoogle Scholar
  11. 11.
    Ganguly, A., Rock, J. M., and Prockop, D. J. (1993) Proc. Natl. Acad. Sci. USA 90, 10,325–10,329.PubMedCrossRefGoogle Scholar
  12. 12.
    White, M. B., Carvalho, M., Derse, D., O’Brien, S. J., and Dean, M. (1992) Detecting single base substitutions as heteroduplex polymorphisms. Genomics 12, 301–306.PubMedCrossRefGoogle Scholar
  13. 13.
    Cotton, R. G. H., Rodrigues, N. R., and Campbell, R. D. (1988) Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmiun tetroxide and its application to the study of mutations. Proc. Natl. Acad. Sci. USA 85, 4397–4401.PubMedCrossRefGoogle Scholar
  14. 14.
    Briggs, M. D., Mortier, G. R., Cole, W. G., King, L. M., Golik, S. S., Bonaventure, J., et al. (1998) Diverse mutations in the gene for cartilage oligomeric matrix protein (COMP) in the pseudoachondroplasia-multiple epiphyseal dysplasia disease spectrum. Am. J. Hum. Genet. 62, 311–319.PubMedCrossRefGoogle Scholar
  15. 15.
    Loughlin, J., Irven, C., Mustafa, Z., Briggs, M. D., Carr, A., Lynch, S., et al. (1998) Identification of five novel mutations in the cartilage oligomeric matrix protein gene in pseudoachondroplasia and multiple epiphyseal dysplasia. Hum. Mut. Suppl. S10–S17.Google Scholar
  16. 16.
    Ballo, R., Briggs, M. D., Cohn, D. H., Knowlton, R. G., Beighton, P. H., and Ramesar, R. S. (1997) Multiple epiphyseal dysplasia, Ribbing type: a novel point mutation in the COMP gene in a South African family. Am. J. Med. Genet. 68, 396–400.PubMedCrossRefGoogle Scholar
  17. 17.
    Briggs, M., Choi, H., Warman, M., Loughlin, J., Wordsworth, P., Sykes, B., et al. (1994) Genetic mapping of a locus for multiple epiphyseal dysplasia to a region of chromosome 1 containing a type IX collagen gene. Am. J. Hum. Genet. 55, 678–684.PubMedGoogle Scholar
  18. 18.
    Deere, M., Blanton, S. H., Scott, C. I., Langer, L. O., Pauli, R. M., and Hecht, J. T. (1995) Genetic heterogeneity in multiple epiphyseal dysplasia. Am. J. Hum. Genet. 56, 698–704.PubMedGoogle Scholar
  19. 19.
    Olsen, B. R. (1997) Collagen IX. Intl. J. Biochem. Cell Biol. 29, 555–558.CrossRefGoogle Scholar
  20. 20.
    Chan, D. and Cole, W. G. (1991) Low basal transcription of genes for tissue specific collagens by fibroblasts and lymphoblastoid cells. J Biol. Chem. 226, 12,487–12,494.Google Scholar
  21. 21.
    Dharmavaram, R. M., Baldwin, C. T., Reginato, A. M., and Jimenez, S. A. (1993) Amplification of cDNAs for human cartilage-specific types II, IX and XI collagens from chondrocytes and Epstein-Barr Virus-transformed lymphocytes. Matrix 13, 125–133.PubMedGoogle Scholar
  22. 22.
    Cooper, D., Berg, L., Kakkar, V., and Reiss, J. (1994) Ectopic (illegitimate) tran-scription-new possibilities for the analysis and diagnosis of human genetic disease. Ann. Med. 26, 9–14.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Michael D. Briggs
    • 1
  1. 1.School of Biological SciencesUniversity of ManchesterManchesterUK

Personalised recommendations