Skip to main content

JAK-Mediated Phosphorylation and Activation of STAT Signaling Proteins

Analysis by Phosphotyrosine Blotting and EMSA

  • Protocol
Protein Kinase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 124))

  • 721 Accesses

Abstract

The JAK/STAT pathway is activated by a wide range of ligands including cytokines and growth factors (1,2; see Table 1). This pathway was discovered by two independent approaches that initially identified the role of JAKs and STATs in interferon signaling. The first, a biochemical approach, used promoter elements to isolate and purify STATs (3) and the second, a genetic approach, led to the isolation of mutants defective in their response to interferon (4). The latter resulted in eight mutant cell lines (summarized in Table 2) which were complemented by components of the interferon pathway (59). These mutants have been fundamental in demonstrating a role for JAKs and STATs in cytokine signaling and in understanding the mechanisms of activating the JAK/STAT pathway.

Table 1
Table 2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Briscoe J. and Guschin D. (1994) Signal transduction —just another signalling pathway. Curr. Biol. 4, 1033–1035.

    Article  PubMed  CAS  Google Scholar 

  2. Ihle J. N., Witthuhn B. A., Quelle F. W., Yamamoto K., and Silvennoinen O. (1995) Signaling through the hematopoietic cytokine receptors. Annu. Rev. Immunol. 13, 369–398.

    Article  PubMed  CAS  Google Scholar 

  3. Schindler C., Fu X.-Y., Improta T., Aebersold R., and Darnell J. E. J. (1992) Proteins of transcripton factor ISGF-3: One gene encodes the 91-and 84-kDa proteins that are activated by interferon a. Proc. Natl. Acad. Sci. USA 89, 7836–7839.

    Article  PubMed  CAS  Google Scholar 

  4. Pellegrini S., John J., Shearer M., Kerr I. M., and Stark G. R. (1989) Use of a selectable marker regulated by alpha interferon to obtain mutations in the signaling pathway. Mol. Cell. Biol. 9, 4605–4612.

    PubMed  CAS  Google Scholar 

  5. Muller M., Laxton C., Briscoe J., Schindler C., Improta T., Darnell JE. Jr., Stark G. E., and Kerr I. M. (1993) Complementation of a mutant-cell line —central role of the 91-kda polypeptide of ISGF3 in the interferon-alpha and inter-feron-gamma signal-transduction pathways. EMBO J. 12, 4221–4228.

    PubMed  CAS  Google Scholar 

  6. Muller M., Briscoe J. Laxton C., Guschin D., Ziemicki A., Silvennoinen O., et al. (1993) The protein-tyrosine kinase JAK1 complements defects in interferon-alpha/beta and interferon-gamma signal-transduction. Nature 366, 129–135.

    Article  PubMed  CAS  Google Scholar 

  7. Watling D., Guschin D., Muller M., Silvennoinen O., Witthuhn B. A. Quelle F. W., et al. (1993) Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-Γ signal transduction pathway. Nature 366, 166–170.

    Article  PubMed  CAS  Google Scholar 

  8. Kohlhuber F., Rogers N. C., Watling D., Feng J., Guschin D., Briscoe J., et al. (1997) A JAK1/JAK2 chimera can sustain alpha-interferon and gamma-interferon responses. Mol. Cell. Biol. 17, 695–706.

    PubMed  CAS  Google Scholar 

  9. Lutfalla G., Holland S. J., Cinato E., Monneron D., Reboul J., Rogers N. C., et al. (1995) Mutant U5a cells are complemented by an interferon-alpha-beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene-cluster. EMBO J. 14, 5100–5108.

    PubMed  CAS  Google Scholar 

  10. Harpur A. G., Andres A.-C., Ziemiecki A., Aston R. R., and Wilks A. F. (1992): JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 7, 1347–1353.

    PubMed  CAS  Google Scholar 

  11. Feng J., Witthuhn B. A., Matsuda T., Kohlhuber F., Kerr I. M., and Ihle J. N. (1997) Activation of jak2 catalytic activity requires phosphorylation of y-1007 in the kinase activation loop. Mol. Cell. Biol. 17, 2497–2501.

    PubMed  CAS  Google Scholar 

  12. Improta T., Schindler C., Horvarth C. M., Kerr I. M., Stark G. R., and Darnell. J. E. Jr. (1994) Transcription factor ISGF3 formation requires phosphorylated stat91 protein, but stat 113 protein is phosphorylated independently of stat91 protein. Proc. Natl. Acad. Sci. USA 91, 4776–4780.

    Article  PubMed  CAS  Google Scholar 

  13. Fujitani Y., Hibi M., Fukada T., Takahashi-Tezuka M., Yoshida H., Yamaguchi T., et al. (1997) An alternative pathway for STAT activation that is mediated by the direct interaction between JAK and STAT. Oncogene 14, 751–761.

    Article  PubMed  CAS  Google Scholar 

  14. Fu X.-Y. (1992) A transcription factor with SH2 and SH3 domains is directly activated by an interferon a-induced cytoplasmic protein tyrosine kinase(s). Cell 70, 323–335.

    Article  PubMed  CAS  Google Scholar 

  15. Wagner B. J., Hayes T. E., Hoban C. J., and Cochran B. H. (1990) The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. EMBO J. 9, 4477–4484.

    PubMed  CAS  Google Scholar 

  16. Han Y., Watling D., Rogers N. C., and Stark G. R (1997) JAK 2 and STAT5, but not JAK1 and STAT1, are required for prolactin induced beta-lactoglobulin transcription. Mol. Endocrinol. 11, 1180–1188.

    Article  PubMed  CAS  Google Scholar 

  17. Sims S. H., Cha Y., Romine M. F., Gao P. Q., Gottlieb K., and Deisseroth A. B (1993) Anovel interferon-inducible domain: structural and functional analysis of the human interferon regulatory factor 1 gene promoter. Mol. Cell. Biol. 13, 690–702.

    PubMed  CAS  Google Scholar 

  18. Pearse R. N., Feinman R., and Ravetch J. V. (1991) Characterization of the promoter of the human gene encoding the high-affinity IGG receptor: transcriptional induction by Γ-interferon is mediated through common DNA response elements. Proc. Natl. Acad. Sci. USA 89, 11,964–11,968.

    Google Scholar 

  19. Parrington J., Rogers N. C., Gewert D. R., Pine R., Veals S. A., Levy D. E., et al. (1993) The interferon-stimulable response elements of two human genes detect different sets of transcription factors. Eur. J. Biochem. 214, 617–626.

    Article  PubMed  CAS  Google Scholar 

  20. Reid L. E., Brassnet A. H., Gilbert C. S., Portet A. C., Gewert D. R., Stark G. R., and Kerr I. M. (1989) A single DNA response element can confer inducibility by both α-and Γ-interferons. Proc. Natl. Acad. Sci. USA 86, 840–844.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Broughton, N., Burfoot, M.S. (2000). JAK-Mediated Phosphorylation and Activation of STAT Signaling Proteins. In: Reith, A.D. (eds) Protein Kinase Protocols. Methods in Molecular Biology™, vol 124. Humana Press. https://doi.org/10.1385/1-59259-059-4:131

Download citation

  • DOI: https://doi.org/10.1385/1-59259-059-4:131

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-700-7

  • Online ISBN: 978-1-59259-059-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics