Advertisement

Murine Model of Crescentic Nephritis

  • Clare Lloyd
  • Jose-Carlos Gutierrez-Ramos
Part of the Methods in Molecular Biology book series (MIMB, volume 138)

Abstract

In humans rapidly progressive glomerulonephritis is characterized by glomerular inflammation and the formation of glomerular crescents, composed of an infiltrate of mononuclear inflammatory cells and proliferating parietal epithelial cells. As disease progresses the crescents infringe on the urinary space, compressing the glomerular tuft, ultimately causing nonreversible acute renal failure. This process is almost always associated with severe interstitial and periglomerular inflammation. Typically, the inflammatory infiltrate gives way to a progressive fibrotic process involving the crescents and the periglomerular and peritubular interstitium, accompanied by tubular atrophy and progressive renal failure (1).

Keywords

Crescentic Glomerulonephritis Crescent Formation Glomerular Tuft Rapidly Progressive Glomerulonephritis Mononuclear Inflammatory Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Salant D. J. (1987) Immunopathogenesis of crescentic glomerulonephritis and lung purpura. Kidney Int. 32, 408–425.PubMedCrossRefGoogle Scholar
  2. 2.
    Lloyd C. M., Minto A. W., Dorf M. E., Proudfoot A., Wells T. N. C., Salant D. J., and Gutierrez-Ramos J.-C. (1997) RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis but only MCP-1 is involved in crescent formation and interstitial fibrosis. J. Exp. Med. 185(7), 1371–1380.PubMedCrossRefGoogle Scholar
  3. 3.
    Schlondorff D., Nelson P. J., Lucknow B., and Banas B. (1997) Chemokines and renal disease. Kidney Int. 51, 610–621.PubMedCrossRefGoogle Scholar
  4. 4.
    Lloyd C. M., and Gutierrez-Ramos J. C. (1998) The role of chemokines in tissue inflammation and autoimmunity in renal diseases. Curr. Opin. Nephrol. Hypertens. 7, 281–287.PubMedGoogle Scholar
  5. 5.
    Salant D. J. and Cybulsky A. V. (1988) Experimental glomerulonephritis. Methods Enzymol. 162, 421–461.PubMedCrossRefGoogle Scholar
  6. 6.
    O’Meara Y. M., Natori Y., Minto A. W., Goldstein D. J., Manning E. J., and Salant D. J. (1992) Nephrotoxic antiserum identifies a b1-integrin on rat glomerular epithelial cells. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 262, F1083–F1091.Google Scholar
  7. 7.
    Morley A. R. and Wheeler J. (1985) Cell proliferation within the Bowman’s capsule in mice. J. Pathol. 145, 315.PubMedCrossRefGoogle Scholar
  8. 8.
    Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.PubMedCrossRefGoogle Scholar
  9. 9.
    Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  10. 10.
    Gonzalo J.-A., Jia G.-Q., Aguirre V., Friend D., Coyle A. J., Jenkins N. A., et al. (1996) Mouse eotaxin expression parallels eosinophil accumulation during lung allergic inflammation but it is not restricted to a Th2-type response. Immunity 4, 1–14.CrossRefGoogle Scholar
  11. 11.
    Jia G. Q., Gonzalo J. A., Lloyd C., Kremer L., Lu L., Martinez C., Wershil B. K., and GutierrezRamos J. C. (1996) Distinct expression and function of the novel mouse chemokine monocyte chemotactic protein-5 in lung allergic. J. Exp. Med. 184, 1939–1951.PubMedCrossRefGoogle Scholar
  12. 12.
    Heeger P., Wolf G., Meyers C., Sun M. J., O’Farrell S. C., Krensky A. M., and Neilson E. G. (1992) Isolation and characterization of cDNA from renal tubular epithelium encoding murine RANTES. Kidney Int. 41, 220–226.PubMedCrossRefGoogle Scholar
  13. 13.
    Rollins B. J., Morrison E. D., and Stiles C. D. (1988) Cloning and expression of JE, a gene inducible by platelet-derived growth factor and whose product has cytokine-like properties. Proc. Natl. Acad. Sci. USA 85, 3738–3742.PubMedCrossRefGoogle Scholar
  14. 14.
    Widmer U., Yang S., van Deventers S., Manogue K. R., Sherry B., and Cerami A. (1991) Genomic structure of murine macrophage inflammatory protein-1 and conservation of potential regulatory sequences with a human homolog, LD78. J. Immunol. 146, 4031–4040.PubMedGoogle Scholar
  15. 15.
    Burd P. R., Freeman G. J., Wilson S. D., Berman M., DeKruyff R., Billings P. R., and Dorf M. E. (1987) Cloning and characterization of a novel T cell activation gene. J. Immunol. 139, 3126.PubMedGoogle Scholar
  16. 16.
    Pan Y., Lloyd C., Zhou H., Dolich S., Deeds J., Gonzalo J.-A., et al. (1997) Neurotactin: a membrane-anchored chemokine upregulated in brain inflammation. Nature 387, 611–617.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Clare Lloyd
    • 1
  • Jose-Carlos Gutierrez-Ramos
    • 1
  1. 1.Millenium PharmaceuticalsCambridge

Personalised recommendations